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Abstract

Linear matrix equations and nonlinear eigenvalue problems (NEP) appear in a wide va-
riety of applications in science and engineering. Important special cases of the former
are the Lyapunov equation, the Sylvester equation, and their respective generalizations.
These appear, e.g., as Gramians to linear and bilinear systems, in computations involv-
ing block-triangularization of matrices, and in connection with discretizations of some
partial differential equations. The NEP appear, e.g., in stability analysis of time-delay
systems, and as results of transformations of linear eigenvalue problems.

This thesis mainly consists of 4 papers that treats the above mentioned compu-
tational problems, and presents both theory and methods. In paper A we consider
a NEP stemming from the discretization of a partial differential equation describing
wave propagation in a waveguide. Some NEP-methods require in each iteration to
solve a linear system with a fixed matrix, but different right-hand sides, and with a fine
discretization, this linear solve becomes the bottleneck. To overcome this we present a
Sylvester-based preconditioner, exploiting the Sherman–Morrison–Woodbury formula.

Paper B treats the generalized Sylvester equation and present two main results:
First, a characterization that under certain assumptions motivates the existence of low-
rank solutions. Second, a Krylov method applicable when the matrix coefficients are
low-rank commuting, i.e., when the commutator is of low rank.

In Paper C we study the generalized Lyapunov equation. Specifically, we extend
the motivation for applying the alternating linear scheme (ALS) method, from the sta-
ble Lyapunov equation to the stable generalized Lyapunov equation. Moreover, we
show connections to H2-optimal model reduction of associated bilinear systems, and
show that ALS can be understood to construct a rank-1 model reduction subspace to
such a bilinear system related to the residual. We also propose a residual-based general-
ized rational-Krylov-type subspace as a solver for the generalized Lyapunov equation.

The fourth paper, Paper D, connects the NEP to the two-parameter eigenvalue
problem. The latter is a generalization of the linear eigenvalue problem in the sense
that there are two eigenvalue-eigenvector equations, both depending on two scalar vari-
ables. If we fix one of the variables, then we can use one of the equations, which is
then a generalized eigenvalue problem, to solve for the other variable. In that sense,
the solved-for variable can be understood as a family of functions of the first variable.
Hence, it is a variable elimination technique where the second equation can be under-
stood as a family of NEPs. Methods for NEPs can thus be adapted and exploited to
solve the original problem. The idea can also be reversed, providing linearizations for
certain NEPs.

Keywords: Matrix equations, Lyapunov equation, Sylvester equation, nonlinear
eigenvalue problems, two-parameter eigenvalue problems, Krylov methods, iterative
methods, preconditioning, projection methods
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Sammanfattning

Linjära matrisekvationer är en vanligt förekommande variant av linjära ekvationssys-
tem. Viktiga specialfall är Lyapunovekvationen och Sylvesterekvationen, samt deras re-
spektive generaliseringar. Dessa ekvationer uppstår till exempel som karakteriseringar
av Gramianer till linjära och bilinjära dynamiska system, i beräkningar som innebär
blocktriangularisering av matriser, och vid diskretiseringar av vissa partiella differen-
tialekvationer. Det icke-linjära egenvärdesproblemet, från engelskan förkortat NEP, är
en generalisering av det linjära egenvärdesproblemet för en matris. I det icke-linjära
fallet tillåts matrisens beroende på den skalära parametern att vara just icke-linjärt.
Formellt betraktas problemet som en funktion vars definitionsmängd är en delmängd av
de komplexa talen, och vars värdemängd är (en delmängd av de) komplexvärda matris-
erna. Problemet kan beskrivas som att hitta värden, så kallade egenvärden, som gör att
den tillhörande matrisen i värdemängden är singulär; en vektor i nollrummet kallas för
en egenvektor. Notera att beroendet på egenvektorn är linjärt. Tillämpningar inkluderar
bland annat studier av dynamiska system med tidsfördröjning, samt vid transforma-
tioner av linjära egenvärdesproblem. En annan generalisering av egenvärdesproblemet
är två-parameters egenvärdesproblemet vilket består av två matrisvärda funktioner som
båda beror på två parametrar. Målet är att hitta par av parametrar så att båda matriserna
är singulära.

Denna avhandling är en sammanläggningsavhandling och består i huvudsak av
4 artiklar. Dessa artiklar berör både praktiska och teoretiska aspekter av de ovan
nämnda beräkningsproblemen. I artikel A betraktas ett NEP som härstammar från
en partiell differentialekvation, vilken beskriver vågutbredning i en vågledare. På det
diskretiserade problemet tillämpas residual inversiteration (residual inverse iteration).
Metoden kräver att man löser likartade linjära ekvationssystem många gånger, med
olika högerled. När diskretiseringen blir noggrannare blir beräkningen av lösningen
till det linjära ekvationssystemen en flaskhals. För att komma runt detta presenteras
en Sylvester-baserad förkonditionerare som utnyttjar Sherman–Morrison–Woodburys
formel för invertering av matriser med lågrangstermer.

Artikel B behandlar den generaliserade Sylvesterekvationen och har två huvu-
dresultat: Ett resultat är en karakterisering som under vissa antaganden motiverar ex-
istensen av lösningar som kan approximeras med matriser med låg rang. Resultatet är
viktigt då många metoder för storskaliga problem har som mål att hitta en approxima-
tion av låg rang. Ett annat resultat är en Krylovmetod som kan användas när matrisko-
efficienterna lågrangskommuterar, d.v.s. när kommutatorn är en matris av låg rang.

I artikel C undersöker vi den generaliserade Lyapunovekvationen. ALS-metoden,
från engelskan alternating linear scheme, är en girig algoritm som presenterats i lit-
eraturen, och som iterativt utökar approximationen med en matris av rang 1. Denna
utökning definieras utifrån att den är ett lokalt minimum av felet, när det senare mäts i
en relaterad energinorm. Vi presenterar en utvidgning av den teoretiska motiveringen
till användandet av ALS-metoden, från den stabila Lyapunovekvationen till den sta-
bila generaliserade Lyapunovekvationen. Vi visar också på kopplingar tillH2-optimal
modellreduktion för bilinjära dynamiska system, och hur rang-1-uppdateringarna i
ALS-metoden kan ses som lokalt H2-optimala till relaterade modellreduktionsprob-
lem. Vi presenterar även varianter av den rationella Krylovmetoden som är anpassade
till den generaliserade Lyapunovekvationen.
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Den fjärde artikeln, artikel D, presenterar en koppling mellan två-parameters egen-
värdesproblemet och NEP. Genom att använda den ena ekvationen för att genomföra
en variabeleliminering kan den andra skrivas som en familj av NEP:ar. Elimineringen
sker på bekostnad av att ett generaliserat egenvärdesproblem behöver lösas för varje
funktionsevaluering av NEP:en. Metoder för NEP kan på så sätt anpassas för att lösa
två-parameters egenvärdesproblemet. Icke-linjärisering kan även tillämpas i omvänd
riktning och kan på så sätt leda till linjäriseringar av vissa NEP:ar.

Nyckelord: Matrisekvationer, Lyapunovekvationen, Sylvesterekvationen, icke-
linjära egenvärdesproblem, två-parameters egenvärdesproblem, Krylovmetoder, iter-
ativa metoder, förkonditionering, projektionsmetoder
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Chapter: 1

Introduction

T his thesis is a so called compilation thesis, sometimes referred to as a thesis by publi-
cation. As such it consists of two main parts: Part I is an introduction and summary,

and Part II contains the appended papers. Hence, Part I introduces and summarizes the
topics covered in the thesis and puts the included papers in a context. Moreover, it high-
lights the author’s contribution to the papers, as these are written together with co-authors.
In contrast, Part II constitutes the main scientific contributions of this work. For Part I
there is a common bibliography in the end, and for Part II each paper has its own bibli-
ography, since each paper is self-contained. The appended papers in Part II are, except
for some minor editing, the same as the corresponding published papers. An electronic
version of the thesis might only contain Part I. However, forward references from Part I
should still be possible to follow knowing that the thesis follows the numbering convention:
Paper.Section.Item for theorems, propositions, lemmas, and remarks; (Paper.Equation) for
equations; and Paper.Item for figures, tables, and algorithms.

Within the scope of this PhD there has also been involvement in the development of
a software for nonlinear eigenvalue problems: NEP-PACK, and the writing of a textbook:
Preconditioning for linear systems. These works are briefly treated in Chapter 3.

1.1 Motivation

A common theme throughout this thesis is the development of numerical methods and al-
gorithms, where the goal is often a combination of being able to handle larger problems,
faster, with more accuracy, and/or higher robustness. The importance of this task is re-
flected in that many scientific problems are nowadays approached by computations and
simulations, or as a public report put it:

3



1. INTRODUCTION

“Over the past several decades, simulation has become the third pillar of
science, complementing theory and experiment [. . . ].” [123, pp. 66–67]

Thus, simulation capacity is vital to many parts of science today. Although hardware has
developed drastically over the last several decades, the importance of algorithm develop-
ment should not be underestimated, as illustrated in another report:

“Improved algorithms and libraries have contributed as much to increases in
capability as have improvements in hardware.” [107, p. 54]

More specifically, this thesis focuses on development in the field of numerical linear alge-
bra. The topic is at the heart of many computations, and improvements are contributing to
many other fields, e.g.,

“Improvements in linear algebra algorithms are not central to the theory of
linear programming, but are nevertheless central to computational progress
in this subject.” [25, p. 310]

The field of numerical linear algebra involves many classes of problems, such as, e.g.,
eigenvalue computations; matrix function evaluations; not to mention solutions to linear
systems of equations. In fact:

“Many scientific problems lead to the requirement to solve linear systems of
equations as part of the computations. From a pure mathematical point of
view, this problem can be considered as being solved [. . . ]. The actual com-
putation of the solution(s) may however lead to severe complications, [. . . ].”

[121, p. 1]

Hence, even if some problems are mathematically solved, and maybe since long, the ac-
tual application still constitutes a both interesting and important field of research. How-
ever, many problems are nonlinear and today nonlinear models are becoming more and
more adopted in many fields. Nevertheless, numerical linear algebra will continue to be
at the core of many computational problems as many methods for nonlinear problems rely
on solving linear subproblems. Thus, the continued development and improvement of
methods and algorithms, both inside and outside the field of numerical linear algebra, will
remain an important task.
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Chapter: 2

Preliminaries

C hapter two contains some introductory and well-established results from the literature.
The chapter serves as an introduction to the topics discussed in this thesis and the aim

is to provide an overview and a foundation for readers who are not familiar with the topic.
The chapter also introduces some standard notation. Hence, readers who are experts in
the field may, at their convenience, skip this chapter and go directly to Chapter 3 and the
appended papers in Part II.

The chapter starts on a basic level, but quickly reaches more advanced topics. It mostly
covers the theoretical background. In the outline that follows letters in parenthesis indicates
relevance to the corresponding appended paper. Section 2.1 discusses some basic linear
algebra and matrix-theoretical results relevant for most of the exposition. Specifically, it
contains a part on the generalized eigenvalue problem (D) and on the Kronecker product
(A, B, C). Matrix functions are introduced in Section 2.2 since they are relevant for some
later analysis. In Section 2.3 linear matrix equations (A, B, C) are presented, and the
nonlinear eigenvalue problem (A, D) is introduced in Section 2.4.

2.1 Basic linear algebra and matrix theory

We summarize some standard concepts and results usually found in textbooks, such as, e.g.,
Horn and Johnson [70], Golub and Van Loan [51], Bellman [14], and Gantmacher [48].

Notation and initial definitions

The notation used regarding matrices is standard in the literature. We use upper case letters
for matrices and lower case letters with subscripts for elements of the matrix, i.e., the
matrix A ∈ Cn×n has elements ai,j on row i and column j. Occasionally we may also

5



2. PRELIMINARIES

write [AB]i,j which is a way to express ci,j when the matrix C = AB is not named
explicitly. Note that lower case letters are also used to denote both vectors, e.g., x ∈ Cn,
and scalars z ∈ C. However, the dimension will be clear from the context. The transpose of
the matrix A is denoted AT , and the Hermitian transpose AH . The determinant is denoted
det(A). We define the commutator for two matrices A,B ∈ Cn×n as com(A,B) :=
AB −BA, and say that the two matrices are commuting if com(A,B) = 0. Furthermore,
a matrix is called normal if it commutes with its Hermitian transpose, i.e., AAH = AHA.
We say that a matrix, possibly rectangular, has orthogonal columns if ATA = I , and we
call a square matrix orthogonal if ATA = AAT = I and unitary if AHA = AAH = I .

Two subspaces associated with a matrix A ∈ Cn×m are the range and the kernel. The
range is the subspace of vectors that is the result of (at least) one vector mapped by A, i.e.,
range(A) := {b ∈ Cn : b = Ax for some x ∈ Cm}. The kernel, sometimes nullspace, is
the subspace of vectors that A maps to zero, i.e., ker(A) := {x ∈ Cm : Ax = 0}. Related
to the range is the span, which is the subspace of vectors, generated by vectors in a set
A, i.e, span(A) := {b ∈ Cn : b =

∑
i∈I αixi for some I, and where xi ∈ A and αi ∈

C for i ∈ I}.

Spectral theory

Definition 2.1.1 (Eigenpair). Let A ∈ Cn×n. A scalar λ0 ∈ C is called an eigenvalue
if A − λ0I is singular. An eigenvector is a vector x0 ∈ Cn such that x0 6= 0 and x0 ∈
ker(A− λ0I), for an eigenvalue λ0. The pair (λ0, x0) is called an eigenpair.

Finding an eigenpair (λ, x) such that Ax = λx, or equivalently

(A− λI)x = 0,

is referred to as the eigenvalue problem, and is an important problem with many appli-
cations. The eigenvalue problem has been extensively studied in the field of numerical
linear algebra and considerable material is available, e.g., in [51], [6], [120], and [133].
The eigenvalue can be equivalently described as a value λ0 such that det(A − λ0I) = 0,
and from the properties of the determinant we see that this is a root-finding problem for a
polynomial. The polynomial p(z) := det(A− zI) is called the characteristic polynomial.

Definition 2.1.2 (Algebraic and geometric multiplicity). Let A ∈ Cn×n, and let λ0 ∈ C
be an eigenvalue. The algebraic multiplicity of the eigenvalue is defined as the multiplicity
of the root λ0 to the characteristic polynomial. Moreover, the geometric multiplicity of the
eigenvalue is defined as the dimension of the kernel of A− λ0I , i.e., dim(ker(A− λ0I)).

Definition 2.1.3 (Spectrum and spectral radius). Let A ∈ Cn×n. The spectrum of A is the
set of all eigenvalues, i.e., σ(A) := {λ ∈ C : λ is an eigenvalue of A}, and the spectral
radius of A is the largest modulus of its eigenvalues, i.e., ρ(A) := maxλ∈σ(A) |λ|.

Definition 2.1.4 (Field of values). For a matrix A ∈ Cn×n the field of values, sometimes
called numerical range, is defined as

W (A) := {z ∈ C : z = xHAx, x ∈ Cn, xHx = 1}.
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2.1. Basic linear algebra and matrix theory

Proposition 2.1.5 ([69, Property 1.2.6]). For a matrix A ∈ Cn×n, the spectrum is con-
tained in the field of values, i.e., σ(A) ⊂W (A).

Proposition 2.1.6 ([70, Theorem 4.1.4]). Let A ∈ Cn×n. The matrix A is Hermitian if
and only if W (A) ⊆ R. Hence, if A is Hermitian, then the eigenvalues are real.

Definition 2.1.7 (Invariant subspace). Let A ∈ Cn×n. A subspace H ⊂ Cn is called
invariant if Ax ∈ H for all x ∈ H.

The term A-invariant is sometimes used to highlight that the invariance depends on
the matrix in consideration. Examples are different spaces spanned by eigenvectors, i.e.,
H = {v ∈ Cn : v =

∑k
i=1 αixi, αi ∈ C and xi eigenvectors of A for i = 1, 2, . . . , k}.

Specifically, spaces spanned by a single eigenvector, i.e., H = span{x0} where x0 is an
eigenvector of A, are A-invariant.

Definition 2.1.8 (Definite matrix). A matrix A ∈ Rn×n is called positive definite if for
any x ∈ Rn such that x 6= 0, then xTAx > 0. Similarly, we call it negative definite if
xTAx < 0. The term positive/negative semidefinite is used if the respective inequality is
non-strict. A matrix that is not semidefinite is called indefinite.

In the complex case the quantity xHAx is considered, and required to be real. Hence,
according to this definition, in order to talk about definiteness in the complex case it is
required that the matrix is Hermitian.1 A related concept is the following characterization.

Definition 2.1.9 (Stable matrix). A matrix is called stable, sometimes Hurwitz, if all the
eigenvalues have strictly negative real parts, i.e., A ∈ Cn×n is stable if Re(λ) < 0 for all
λ ∈ σ(A).

The name stable originates from that the dynamical system ẋ(t) = Ax(t) is stable,
i.e., limt→∞ x(t) = 0, if and only if A is a stable matrix [5, Theorem 5.14]. There
is also a notion of a matrix A being anti-stable, which means that −A is stable, or in
other words, that all the eigenvalues of A have strictly positive real parts. It follows from
Proposition 2.1.5 that negative definiteness is a sufficient condition for stability. Moreover,
for symmetric matrices it is also necessary.

Proposition 2.1.10 ([70, Theorem 4.1.10]). A symmetric matrixA ∈ Rn×n is stable if and
only if it is negative definite.

However, negative definiteness is not a necessary condition for stability if the matrix is

non-symmetric. Consider the following counterexample: Let A =

[
−1 α
0 −2

]
, for some

α ∈ R. The matrix A has the eigenvalues −1 and −2, but for x =
[
1 1

]T
, we have that

xTAx = α− 3, which is greater than zero for α > 3. Thus, A is stable, but indefinite.

1Definition 2.1.8 is adopted in, e.g., [70]. However, there is a weaker definition in which one considers the
definiteness of the Hermitian part of the matrix A, i.e., the definiteness of (A+AH)/2. The latter is equivalent
to considering Re(xHAx).
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Definition 2.1.11 (Similarity). Two matrices A ∈ Cn×n and B ∈ Cn×n are called similar
if there exists a nonsingular matrix S ∈ Cn×n such that B = S−1AS. The matrix S is
called the similarity transform. Moreover, if S is unitary or orthogonal, then A and B are
called unitarily similar or orthogonally similar respectively.

Proposition 2.1.12 ([70, Corollary 1.3.4]). Let A,B ∈ Cn×n. If A and B are similar,
then they have the same eigenvalues, i.e., σ(A) = σ(B).

Definition 2.1.13 (Diagonalization). A matrix is called diagonalizable if it is similar to a
diagonal matrix, and unitarily diagonalizable if the similarity transform is unitary.

A necessary condition for a matrix to be diagonalizable is that the eigenvalues are
distinct, and a matrix is unitarily diagonalizable if and only if it is normal. However,
not all matrices are diagonalizable. Hence, we present a more general type of similarity
transformation, that exists for all matrices. To do so we need the following definition.

Definition 2.1.14 (Jordan block). The following type of matrix is called a Jordan block,

Jn(λ) :=



λ 1 0 . . . 0 0
0 λ 1 . . . 0 0

0 0 λ
. . . 0 0

...
...

...
. . . . . .

...
0 0 0 . . . λ 1
0 0 0 . . . 0 λ


∈ Cn×n.

The Jordan block Jn(λ) has the eigenvalue λ with algebraic multiplicity n and geo-
metric multiplicity 1. We may omit the subscript n if the size is clear form the context. A
Jordan matrix is a block-diagonal matrix whose diagonal blocks all are Jordan blocks. The
following result establishes the existence of an important decomposition, and as such also
serves as a definition of it.

Proposition 2.1.15 ([70, Theorem 3.1.11]). For any matrix A ∈ Cn×n there exist; a
nonsingular S ∈ Cn×n; positive integers m and ni for i = 1, 2, . . . ,m such that n =∑m
i=1 ni; and scalars λi, not necessarily distinct, for i = 1, 2, . . . ,m; such that

A = SJS−1, where J :=


Jn1(λ1) 0 . . . 0

0 Jn2
(λ2) . . . 0

...
...

. . .
...

0 0 . . . Jnm
(λm)

 .
The decomposition is called the Jordan form.

The Jordan form is also known as the Jordan canonical form, Jordan normal form, and
Jordan decomposition, and it is unique for any given matrix, up to a permutation of the
Jordan blocks. Moreover, if A ∈ Rn×n and σ(A) ⊂ R, then the Jordan blocks are real
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and we may choose S ∈ Rn×n. Since A is similar to the Jordan matrix, the decomposition
reveals the eigenvalues of A to be the λs on the diagonal of J . The geometric multiplicity
of the eigenvalue λ ∈ σ(A) is the number of Jordan blocks such that λ = λi, and the
algebraic multiplicity is the sum of the numbers ni such that λ = λi. The size of the largest
Jordan block such that λ = λi is the eigenvalue multiplicity in the minimal polynomial.

In practice the following decomposition may be more useful. Likewise, the proposition
asserts the existence, and as such also serves as the definition.

Proposition 2.1.16 ([70, Theorem 2.3.1]). Any matrix A ∈ Cn×n is unitarily similar to
an upper triangular matrix, i.e., there exists a unitary matrix Q ∈ Cn×n and an upper
triangular matrix TA ∈ Cn×n, such A = QTAQ

H . The relation is called a Schur decom-
position.

A Schur decomposition is also known as a Schur factorization, or some times a Schur
triangularization. We note that since it is a similarity transformation and the matrix is
triangular, a Schur decomposition reveals the eigenvalues of the matrix A.

The generalized eigenvalue problem

We introduce an extension of the eigenvalue problem defined above. In the generalized
eigenvalue problem we have two matrices A and B, and want to find an eigenpair (λ, x)
such that

Ax = λBx. (2.1)

Definition 2.1.17 (Pencil). The pair (A,B) associated with (2.1) is called a (matrix) pencil.
The notation A− zB is also commonly used in the literature to denote the pencil.

First, we observe thatB = I reduces the problem to the (classical) eigenvalue problem.
Moreover, if B is invertible, then we have the equivalent problem B−1Ax = λx. Second,
we note that the introduction of the matrix B can make the problem more complicated,
e.g.: If B is rank deficient then the characteristic polynomial p(z) := det(A − zB) does
not have degree n, and hence not n roots; or, if x is a vector in the kernel of both A and B,
i.e., x ∈ ker(A) and x ∈ ker(B), then (2.1) is fulfilled for all values λ; and in general, the
matrices in problem (2.1) does not even need to be square. Some of these complications
give rise to the following definition.

Definition 2.1.18 (Regular and singular). The pencil (A,B) is called regular if A and B
are square, and there exists z ∈ C such that the characteristic polynomial is not identically
zero, i.e., det(A− zB) 6= 0 . A pencil that is not regular is called singular.

A regular pencil is more well-behaved. For instance, it excludes the cases whenA−zB
is rank deficient for all z which happens, e.g., whenA andB have a common kernel. Thus,
we can define an eigenpair similarly as before.

Definition 2.1.19 (Eigenvalue). Let (A,B) be a regular pencil. A scalar λ ∈ C is called
a (generalized) eigenvalue if A − λB is singular. A (generalized) eigenvector is a vector
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x ∈ Cn such that x 6= 0 and x ∈ ker(A − λB), for an eigenvalue λ. The pair (λ, x) is
called a (generalized) eigenpair.

Moreover, we say that∞ is an eigenvalue of the pencil (A,B) if 0 is an eigenvalue of
the pencil (B,A), i.e., if there is a solution 1/λ = µ = 0 to Bx = µAx.

The infinite eigenvalues originates from rank-deficiency of B, and the definition given
above of∞ as an eigenvalue is equivalent to another common definition, found in, e.g., [6,
Section 2.6]. This equivalent second definition states that: If the degree of the characteristic
polynomial is d, then the pencil has n− d infinite eigenvalues.

For a singular pencil, the definition is somewhat different; [6, Sections 2.6.9 and 8.7].
The definition of an eigenvalue in Definition 2.1.19 is a special case of the following defi-
nition. However, note that the following definition does not define eigenvectors.

Definition 2.1.20 (Eigenvalue). Let (A,B) be a (singular) pencil. A scalar λ ∈ C is called
a (generalized) eigenvalue if A − λB has lower rank than A − zB for almost all values
z ∈ C.

Definition 2.1.21 (Spectrum). The spectrum of the pencil (A,B) is the set of all eigenval-
ues, i.e., σ(A,B) := {λ ∈ C : λ is an eigenvalue of (A,B)}.

In this notation we have that σ(A) = σ(A, I). Moreover, we noted above that if A and
B are square, andB is nonsingular, then there is an equivalent (linear) eigenvalue problem.
The observation entails that σ(A,B) = σ(B−1A), when B is nonsingular.

The generalized eigenvalue problem can be equivalently described as finding a triplet
(α, β, x) such that

βAx = αBx.

The eigenvalues are then formally denoted by the tuple (α, β), sometimes as α/β. More-
over, if β 6= 0, then the eigenvalue λ from (2.1) is λ = α/β. Hence, we can transform
between the two different ways of describing the eigenvalues. Moreover, β = 0 (with
α 6= 0) corresponds to an eigenvalue being∞ according to our definition. To avoid con-
fusion and technical difficulties with the (α, β) notation, uniqueness has to be assured. It
can be achieved either by imposing a normalization |α|2 + |β|2 = 1, or by considering
equivalence classes of quotients as in [30]. The description in terms of the tuple (α, β) has
the advantage that it can naturally describe cases when β = 0 which is advantageous, e.g.,
to avoid over/underflow in computations [6, Section 8.4] and in terms of conditioning see
[6, Section 2.6.5] and [51, Section 7.7.3]. An eigenvalue given by α = β = 0 is called an
indeterminate eigenvalue, and corresponds to a singular pencil; see [6, Section 8.7.1].

Proposition 2.1.22. Let A,B ∈ Cn×n be given and assume that the pencil (A,B) is
regular. Let (λ0, x0) ∈ C× Cm be an eigenpair of the generalized eigenvalue problem

Ax = λBx.

Then Bx0 6= 0.
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Proof. The proof is by contradiction. Assume that Bx0 = 0. The cases Ax0 = 0 and
Ax0 6= 0 are investigated separately.

Assume that Ax0 = 0, then x0 is in the kernel of A and B. Hence, det(A− λB) = 0
for all values of λ, which contradicts that the matrix pencil is regular.

Assume that Ax0 6= 0, then β0Ax = 0 implies that β0 = 0. The case α0 = 0 implies
that the pencil is singular, which contradicts that it is regular. The case α0 6= 0 fulfills the
definition of an eigenvalue at infinity which contradicts λ0 ∈ C.

Similar to that eigenvalues can be computed with a Schur decomposition, eigenvalues
of the generalized eigenvalue problem can be computed with a generalized Schur decom-
position.

Proposition 2.1.23 ([129, Theorem 3.1], [70, Theorem 2.6.1], [51, Theorem 7.7.1]). For
any two matrices A,B ∈ Cn×n, there exist unitary matrices Q,Z ∈ Cn×n and upper
triangular matrices TA, TB ∈ Cn×n, such that A = QTAZ

H , and B = QTBZ
H . This is

known as a QZ decomposition, or a generalized Schur decomposition.

Proposition 2.1.24 ([70, Theorem 2.6.1], [51, Theorem 7.7.1]). Let A,B ∈ Cn×n and
(A,B) be a regular pencil. Moreover, let A = QTAZ

H and B = QTBZ
H be a general-

ized Schur decomposition, where Q,Z ∈ Cn×n are unitary matrices and TA, TB ∈ Cn×n
upper triangular matrices. The eigenvalues of the pencil is given by the quotients of the
diagonal elements, i.e., σ(A,B) = {(α, β) : α = [TA]i,i, β = [TB ]i,i, i = 1, 2, . . . , n}.

Recently, further generalizations with applications to periodic eigenvalue problems and
systems of Sylvester equations are investigated in, e.g., [36].

The Kronecker product

We close this section by introducing the Kronecker product and the vectorization operation.
These operators and the properties presented will be especially useful when we consider
linear matrix equations in Section 2.3.

Definition 2.1.25 (Kronecker product). Let A ∈ RnA×mA and B ∈ RnB×mB , then the
Kronecker product A⊗B ∈ RnAnB×mAmB is defined by the following block matrix:

A⊗B :=

 a1,1B . . . a1,mA
B

...
. . .

...
anA,1B . . . anA,mA

B

 .
Definition 2.1.26 (Vectorization). Let A ∈ Rn×m and let ai be the ith column of A. The
vectorization vec(A) is the vector obtained by stacking the columns of A on top of each
other. More specifically, vec(A) :=

[
aT1 aT2 . . . aTm

]T ∈ Rnm.

Proposition 2.1.27 ([69, Chapter 4], [14, Chapter 12]). Let A,C ∈ Rn×n and B,D ∈
Rm×m. Furthermore, let X ∈ Rn×m and α ∈ R. It holds that:
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1. (αA)⊗B = A⊗ (αB)

2. (A⊗B)T = AT ⊗BT

3. (A+ C)⊗B = (A⊗B) + (C ⊗B) and A⊗ (B +D) = (A⊗B) + (A⊗D)

4. (A⊗B)(C ⊗D) = (AC)⊗ (BD)

5. λ ∈ σ(A⊗B) if and only if λ = λAλB for some λA ∈ σ(A) and λB ∈ σ(B)

6. λ ∈ σ(I ⊗ A + B ⊗ I) if and only if λ = λA + λB for some λA ∈ σ(A) and
λB ∈ σ(B)

7. A⊗B is nonsingular if and only ifA andB are nonsingular. Moreover, (A⊗B)−1 =
A−1 ⊗B−1

8. vec(AXB) = (BT ⊗A) vec(X)

Corollary 2.1.28. If a, b ∈ Rn, then

vec(abT ) = b⊗ a.

Proof. From point 8 in Proposition 2.1.27, or by direct calculation since we have that

vec(abT ) =
[
a1b1 a2b1 . . . anb1 a1b2 a2b2 . . . anbn

]T
= b⊗ a.

Remark 2.1.29 (The name of ⊗). The operation ⊗ is also known as direct product or
tensor product, see, e.g., [83]. However, some properties was allegedly first studied in
1858 by Zehfuss [142], and later worked out further by Hurwitz [72] in 1894.2 Thus, it is
argued that the operation⊗ should be called the Zehfuss product; see [60] for an original
reference, and also [51, Notes and references for Section 12.3] as well as [69, Notes and
further readings for Section 4.2] for more recent mentioning (albeit with reference to [60]).

2.2 Matrix functions

The term matrix function is used to denote a generalization of a (scalar) function f : C→
C, to a (matrix) function f : Cn×n → Cn×n. Naturally, the two functions named f
are different objects, yet it is customary to give them the same name. Typically one uses
f(z) to denote the scalar version, sometimes denoted the stem function [69], and f(A)
to denote the matrix version. The notation has its roots in the common usage of lower
case z as a complex variable, and upper case A as a matrix. The following summary
on the topic of matrix functions is based on [63, 69, 73], among others. The topic is
also treated in, e.g., [48, 14]. One way to generalize the concept would be to apply the

2The original articles are written in a language I do not master. Hence, I am unable to fully guarantee the
validity. Nevertheless, the formulas and the parts I do manage to translate seems to verify the alleged result.
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function element-wise. However, that is not what is considered here. Instead we start
with (positive) integer powers, f(z) = zn for some n ∈ N. The natural generalization
is then simply f(A) = An. From there we can go to polynomials p(z) =

∑m
i=0 aiz

i

which are generalized as p(A) =
∑m
i=0 aiA

i, where we interpret A0 = I in analogy with
z0 = 1, i.e., power zero gives the multiplicative identity. With this in mind we arrive at the
following definition.

Definition 2.2.1 (Matrix function - power series). Let f : C → C be an analytic function
with locally convergent power series f(z) =

∑∞
i=0 aiz

i. Moreover, let A ∈ Cn×n be a
matrix with spectral radius ρ(A) < r, where r is the radius of convergence of the power
series. Then we define

f(A) :=
∞∑
i=0

aiA
i.

For Definition 2.2.1 to make sense it is required that the power series in the matrix
converges. The convergence follows from that the spectral radius is smaller than the radius
of convergence of the power series, for a complete proof see, e.g., [69, Theorem 6.2.8]. A
specific case of the definition is a Taylor series expansion, around z = µ, which can be
written as

f(A) :=

∞∑
i=0

f (i)(µ)

i!
(A− µI)i.

The definition is usable and intuitive for entire functions, and a good starting point for
further investigation.

A second definition comes from Cauchy’s integral formula, i.e., for a function f that is
analytic on and inside a simple, piecewise-smooth, and closed contour Γ, it holds that

f(x) =
1

2πi

∮
Γ

f(z)

(z − x)
dz, (2.2)

see, e.g., [1, Section 4.2.2]. Moreover, in the same spirit as we generalized (positive)
integer powers we find that the generalization of (z − x)−1 to the matrix argument (zI −
A)−1 is rather natural. In words it can be viewed as generalizing the operation of a scalar
times the multiplicative identity, and the operation of multiplicative inverse. In operator
theory the corresponding integral is called the Dunford–Taylor integral [76].

Definition 2.2.2 (Matrix function - Dunford–Taylor integral). Let f : C → C be analytic
on and inside a simple, piecewise-smooth, and closed contour Γ. Moreover, let A ∈ Cn×n
be a matrix with eigenvalues strictly enclosed by Γ. Then we define

f(A) :=
1

2πi

∮
Γ

f(z)(zI −A)−1dz.

With two definitions available we need to guarantee that these are not contradictory.
However, we postpone the presentation of such result to later and instead introduce a
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third definition of a matrix function. The definition is based on the Jordan form (Proposi-
tion 2.1.15), and is a more general definition than the two above. To get an intuitive un-
derstanding of the definition we highlight two properties that hold for the two definitions
above, and hence must hold for the new definition to be consistent (we formalize the re-
sults below). First, the function of a matrix and the function of a similarity transform of that
matrix are related through the same similarity transform, i.e., f(SAS−1) = Sf(A)S−1.
Second, for block-diagonal matrices the matrix function becomes the application of the
(matrix) function to each diagonal block separately. Hence, the definition will be based on
similarity transform to Jordan form and block-diagonal application of the function to each
Jordan block. We need to define what f(J(λ)) means, where J(λ) is a Jordan block. To
get intuition we consider the 2× 2 example

Aε :=

[
λ+ ε 1

0 λ

]
=

[
1 −1

ε
0 1

] [
λ+ ε 0

0 λ

] [
1 1

ε
0 1

]
=: Sε

[
λ+ ε 0

0 λ

]
S−1
ε

where λ ∈ C. We have σ(Aε) = {λ, λ+ ε}. Hence, for ε = 0 we have that A0 is a Jordan
block, but if ε 6= 0 thenAε is diagonalizable, as seen in the right-hand side of the equation.
We let f be a suitable function (enough differentiable and continuous around λ), and use
the properties listed above to get

f(Aε) = Sε

[
f(λ+ ε) 0

0 f(λ)

]
S−1
ε =

[
f(λ+ ε) f(λ+ε)−f(λ)

ε
0 f(λ)

]
→
[
f(λ) f ′(λ)

0 f(λ)

]
,

as ε→ 0. By continuity of f we require that f(A0) = limε→0 f(Aε). We see that for f of
the Jordan block A0 the main diagonal is constant f(λ) and that derivatives of f in λ are
showing up in the upper diagonals. The general definition is as follows.

Definition 2.2.3 (Matrix function - Jordan block). Let Jk(λ) ∈ Ck×k be a Jordan block,
as in Definition 2.1.14. Moreover, let f : C→ C be a function such that λ is in the interior
of the domain of f , and f is k − 1 times differentiable at λ. Then

f(Jk(λ)) :=


f(λ) f ′(λ) 1

2f
′′(λ) . . . 1

(k−1)!f
(k−1)(λ)

0 f(λ) f ′(λ) . . . 1
(k−2)!f

(k−2)(λ)

0 0 f(λ) . . . 1
(k−3)!f

(k−3)(λ)
...

...
...

. . .
...

0 0 0 . . . f(λ)

 .

We note that in the case of k = 1 then the Jordan block is trivial, i.e., J1(λ) =
[
λ
]
,

and hence f(J1(λ)) =
[
f(λ)

]
. Thus, the requirement that λ needs to be in the interior of

the domain can be relaxed for semisimple eigenvalues, see [69, Definition 6.2.4]. Based
on this definition, the general definition of a matrix function is as follows.

Definition 2.2.4 (Matrix function - Jordan form). Let A ∈ Cn×n be a matrix with Jordan
form A = SJS−1 as in Proposition 2.1.15. Moreover, let f : C → C be a function such
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that it is applicable to each Jordan block of A, in accordance with Definition 2.2.3. Then

f(A) := S


f(Jn1

(λ1)) 0 . . . 0
0 f(Jn2

(λ2)) . . . 0
...

...
. . .

...
0 0 . . . f(Jnm

(λm))

S−1.

The above definition is independent of the actual Jordan form used [69, Theorem 6.2.9],
and is the most general of the definitions. Definition 2.2.4 only requires the existence of
a finite number of derivatives, and only locally at the eigenvalues of A, whereas both
Definitions 2.2.1 and 2.2.2 requires the function to be analytic in some regions. Hence, it
is possible to only consider Definition 2.2.4, and derive the other results as theorems, as in
[69, Section 6.2]; see also [63, Section 1.2]. However, from the point of view of intuition,
we find it easier to start with Definition 2.2.1 since polynomials are quite familiar. We can
now assert the previously promised equivalences, when applicable.

Proposition 2.2.5 ([69, Theorems 6.2.8, 6.2.9, and 6.2.28], [63, Theorem 1.12], [76]). Let
f : C→ C and A ∈ Cn×n be given, and let fA := f(A) as given by Definition 2.2.4.

• If f and A are such that Definition 2.2.1 is applicable, then f(A) as given by Defi-
nition 2.2.1 is equal to fA.

• If f and A are such that Definition 2.2.2 is applicable, then f(A) as given by Defi-
nition 2.2.2 is equal to fA.

Remark 2.2.6. We have three definitions of a matrix function. However, given the equiva-
lence from Proposition 2.2.5, there is no ambiguity in simply considering a matrix function
f(A). When in doubt, the more general Definition 2.2.4 can be considered.

Remark 2.2.7. We note that there are further ways of defining matrix functions than pre-
sented here, e.g., in [63, Section 1.2.2] a definition based on Hermite interpolation is
presented. The Hermite interpolation is shown to be equivalent to the Jordan form defini-
tion. We omit the details but emphasize that a (primary) matrix function can, in the general
case, also be understood as a polynomial in the matrix. See also [63, Problem 1.3]

With the more general definition in place, we can also formalize what we said above
regarding similarity transforms of matrix functions.

Proposition 2.2.8 ([48, Section V.1.2], [63, Theorem 1.13], [65, Theorem 2.3]). Let A ∈
Cn×n be given, and let f : C → C be such that f(A) is well-defined. Moreover, let
V ∈ Cn×n be invertible. Then f(V AV −1) = V f(A)V −1.

Proof. It follows directly from Definition 2.2.4 by noticing that if A = SJS−1 is a Jordan
form of A, then (V S)J(V S)−1 is a Jordan form of V AV −1.

The same observation can also be used to prove the following result regarding the
eigenvalues of a matrix function.
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Proposition 2.2.9 ([63, Theorem 1.13], [65, Theorem 2.3], [76]). Let A ∈ Cn×n be given
and let f : C → C be such that f(A) is well-defined. Moreover, let λi i = 1, 2, . . . , n
be the eigenvalues of A, i.e., λi ∈ σ(A). Then f(λi) are the eigenvalues of f(A), i.e.,
f(λi) ∈ σ(f(A)), for i = 1, 2, . . . , n.

We can also see that if the function does not map any two eigenvalues to the same value,
i.e., f(λi) 6= f(λj) for all λi 6= λj and λi, λj ∈ σ(A), then the algebraic multiplicities of
the eigenvalues are also preserved. However, the geometric multiplicities may change.

Having the more general definition in place, we can also follow up on the above claim
regarding the application of matrix functions to block-diagonal matrices.

Proposition 2.2.10 ([63, Theorem 1.13], [65, Theorem 2.3]). Let Ai ∈ Cn×n for i =
1, 2, . . . ,m, and let f : C → C be such that f(Ai) is well-defined for i = 1, 2, . . . ,m.
Then

f



A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Am


 =


f(A1) 0 . . . 0

0 f(A2) . . . 0
...

...
. . .

...
0 0 . . . f(Am)

 .
Proof. The proof can be done by induction. We show the base case, when m = 2. Let
A1 = S1J1S

−1
1 and A2 = S2J2S

−1
2 be Jordan forms, according to Proposition 2.1.15.

Then the block-diagonal matrix has a Jordan form[
A1 0
0 A2

]
=

[
S1 0
0 S2

] [
J1 0
0 J2

] [
S−1

1 0
0 S−1

2

]
.

The above expression is a Jordan form of the block matrix. Hence,

f

([
A1 0
0 A2

])
=

[
S1 0
0 S2

]
f

([
J1 0
0 J2

])[
S−1

1 0
0 S−1

2

]
=

[
S1 0
0 S2

] [
f(J1) 0

0 f(J2)

] [
S−1

1 0
0 S−1

2

]
=

[
f(A1) 0

0 f(A2)

]
.

The induction step follows by assuming that A1 is block-diagonal with m− 1 blocks.

There is also a related result, that deals with block-triangular matrices rather than
block-diagonal matrices.

Proposition 2.2.11 ([97, Corollary, p. 7], [63, Theorem 1.13], [65, Theorem 2.3]). Let A
be block-triangular with the blocks, Ai,j ∈ Cn×n for i, j = 1, 2, . . . ,m. Moreover, let
f : C → C be such that f(A) is well-defined. Then f(A) is block-triangular with the
same structure as A, and f(Ai,i) for i = 1, 2, . . . ,m as diagonal blocks.

With regard to Proposition 2.2.11 we note that it might be tempting to believe that
if f(Ai,i) are well-defined for i = 1, 2, . . . ,m, then it would imply that f(A) would
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be well-defined. An improper argument would be that if Ai,i = Qi,iTi,iQ
H
i,i are Schur

decompositions for i = 1, 2, . . . ,m, then A = QTQH is a Schur decomposition of A,
whereQ is block-diagonal withQi as diagonal block i, for i = 1, 2, . . . ,m. However, note
that the eigenvalue multiplicity of A, and specifically the Jordan structure, depends on the
structure and relation between the block-matrices in the definition ofA. A counterexample

is the Jordan block A =

[
1 1
0 1

]
, which is block-triangular matrix with the 1 × 1 blocks

A1,1 = A1,2 = A2,2 = 1. Even if f(1) is well-defined, it is not necessarily true that f ′(1)
exists, e.g., for f(z) = |1− z|. Nevertheless, with some further assumptions the situation
can be remedied. One way is to assume that Ai,i and Aj,j does not share any eigenvalues
if i 6= j. For a similar discussion regarding practical aspects, see [33]. A second way is to
assume f is analytic in a region enclosing the eigenvalues, and thus possesses an infinite
number of derivatives in that region. In both cases the extra assumption assures that the
relevant part of the eigenstructure of A is determined by the blocks Ai,i independently.

As a special case, the block-diagonal result (Proposition 2.2.10) is applicable when all
the elements on the block-diagonal are the same, resulting in a formula for the Kronecker
product, f(I ⊗A) = I ⊗ f(A). Moreover, it turns out that an analogous formula holds for
f(A⊗ I).

Proposition 2.2.12 ([63, Theorem 1.13]). Let A ∈ Cn×n be given, and let I ∈ Rm×m
be the identity matrix. If f : C → C is such that f(A) is well-defined, then f(I ⊗ A) =
I ⊗ f(A), and f(A⊗ I) = f(A)⊗ I .

Proof. As mentioned, f(I ⊗ A) = I ⊗ f(A) is a special case of Proposition 2.2.10.
The relation f(A ⊗ I) = f(A) ⊗ I follows from that A ⊗ I = P (I ⊗ A)PT for some
permutation matrix P (see, e.g., [86]). Hence, with an application of the above result and
Proposition 2.2.8 we have f(A⊗I) = Pf(I⊗A)PT = P (I⊗f(A))PT = f(A)⊗I .

From the power series definition of the matrix function it seems plausible that f(A)
and A commutes, i.e., com(f(A), A) = f(A)A−Af(A) = 0. It is indeed true in general,
even if the power series definition is not valid. See Remark 2.2.7 for further intuition.

Proposition 2.2.13 ([63, Theorem 1.13], [65, Theorem 2.3]). LetA ∈ Cn×n be given, and
let f : C→ C be such that f(A) is well-defined. Then A and f(A) commutes. Moreover,
if X ∈ Cn×n commutes with A, then it commutes with f(A).

Some matrix functions

Constant function

The first matrix function we mention is the constant function, i.e., f(z) := c for some fixed
c ∈ C. This function can be interpreted as c1, i.e., c times the multiplicative identity. We
observe that the generalization is f(A) = cI , i.e., the constant c times the identity matrix,
which is the multiplicative identity for matrices.
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Inverse

The second matrix function we mention is the inverse, i.e., f(z) := z−1. We noted already
above, just above Definition 2.2.2 (Dunford–Taylor integral), that f(A) = A−1 is a natural
generalization. Although the inverse is usually not viewed as a matrix function, there is
already a well-established theory for the inverse of a linear operator, we find it interesting
that there is a matrix-function viewpoint. An example is Proposition 2.2.9, which is a well-
known result for eigenvalues, typically taught in introductory courses in linear algebra.

Related to the inverse we have the function f(z) := (1 + z)−1. In the domain given
by |z| < 1 we have that f(z) = g(z), where g(z) :=

∑∞
i=0(−z)i. However, outside of

the domain f(z) may still be well-defined, although g(z) is not and f(z) 6= g(z). Hence,
thinking in terms of matrix functions of f and g is a nice viewpoint of the Neumann series,
as treated in, e.g., Paper B.

Exponential function

The matrix exponential, i.e., the generalization of f(z) := ez , is an important function
with applications in various fields. In the words of Moler and Van Loan:

“. . . availability of expm(A) in early versions of MATLAB quite possibly
contributed to the system’s technical and commercial success.” [93, p. 42]

The exponential function f is an entire function, and thus all definitions are applicable.
Many well-known properties of the exponential generalize nicely (we list some results
below). However, it has been called “the great matrix exponential tragedy” [93, p. 40] that
eA+B is in general not equal to eAeB . Nevertheless, there are some remedies.

Proposition 2.2.14 ([63, p. 235]). Let A,B ∈ Cn×n. If A and B commutes, i.e., AB =
BA. Then eA+B = eAeB .

Corollary 2.2.15. Let A ∈ Cn×n. It holds that eA/2eA/2 = eA.

The property is a basis for the scaling and squaring method used to compute the matrix
exponential; see, e.g., the works of Higham [64, 63, 65]. Commutation is a sufficient con-
dition. However, there are special cases where commutation is also a necessary condition.
One example is the following result.

Proposition 2.2.16 ([63, Theorem 10.2]). Let A,B ∈ Cn×n and t ∈ C. Then e(A+B)t =
etAetB for all t ∈ C if and only if A and B commutes, i.e., AB = BA.

Proposition 2.2.17. Let A ∈ Cn×n. The matrix eA is nonsingular and the inverse is e−A.

Proof. Nonsingularity follows from the eigenvalues of eA (Proposition 2.2.9), since ez 6= 0
for all z ∈ C. The form of the inverse follows from Proposition 2.2.14, since eAe−A =
eA−A = e0 = I .
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Proposition 2.2.18 ([76, Example 4.8]). Let A ∈ Cn×n. Moreover, let t ∈ C be a param-
eter. Then

d

dt
etA = AetA = etAA.

Proposition 2.2.19. Let A ∈ Cn×n be stable. Moreover, let t ∈ C be a parameter. Then

lim
t→∞

etA = 0.

Proof. From Proposition 2.2.9 we know that the eigenvalues of etA are eλt where λ ∈
σ(A). Since A is stable Re(λ) < 0 and hence limt→∞ etλ = 0.

The two propositions together illustrate what we said above about stable matrices and
the connection to stability of the dynamical system ẋ(t) = Ax(t) (page 7). However, even
if the asymptotic convergence is towards the zero-matrix, it is well-known that ‖etA‖ may
increase at first, before it decays; see, e.g., [93, 132].

Proposition 2.2.20. Let A ∈ Cn×n. Moreover, let t ∈ C be a parameter. Then∫ t

0

eτAdτ = A−1(etA − I) = (etA − I)A−1.

If in addition A is stable, then the limit as t→∞ equals −A−1.

Sign function

The matrix sign function is a generalization of the complex sign function

f(z) := sign(z) =

{
1 if Re(z) > 0

−1 if Re(z) < 0.

The generalization was introduced by Roberts in [109] as a tool to solve matrix equations,
as we will see below (page 27). We list some well-known properties for reference.3

Proposition 2.2.21. Let A ∈ Cn×n. Moreover, let A = SJS−1 be a Jordan form such
that

J =

[
J+ 0
0 J−

]
,

where J+ ∈ Cp×p is anti-stable and J− ∈ Cq×q stable, and p+ q = n. Then

sign(A) = S

[
Ip 0
0 −Iq

]
S−1,

where Ip and Iq are identity matrices of dimensions p× p and q × q, respectively.

Corollary 2.2.22. Let A ∈ Cn×n be stable, then sign(A) = −I .

Corollary 2.2.23 ([109, p. 678]). Let A ∈ Cn×n. It holds that sign(A)2 = I .
3The complex sign function is sometimes defined, differently, as the point on the unit circle in C that is closes

to the given point, i.e., g(z) = ei arg(z). We do not use this definition for matrix functions.
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2.3 Linear Matrix Equations

A general linear matrix equation is described by the equation

m∑
i=1

AiXB
T
i = C, (2.3)

were Ai ∈ RnA×nA , Bi ∈ RnB×nB , C ∈ RnA×nB are given for i = 1, 2 . . . ,m, and
X ∈ RnA×nB is the unknown.4 Properties and solution methods to this type of problems
have been studied for over a century, see, e.g., the work by Wedderburn [89]. Note that
equation (2.3) is linear in the unknown X , and can be equivalently formulated as a linear
system, by using the Kronecker product and the properties in Proposition 2.1.27. The
equivalent linear system is called the Kronecker form and is given as(

m∑
i=1

Bi ⊗Ai

)
vec(X) = vec(C). (2.4)

The opposite implication also holds true. Any linear system (with a dimension that is not
a prime number) can be written as a linear matrix equation. Therefore, the problem of
solving a linear matrix equation is equivalent to solving a linear system. The claim is made
precise in the following result.

Proposition 2.3.1 (Parameterizing linear operators). Let M ∈ RN×N and let c ∈ RN .
Assume that N = nAnB . The vector x ∈ RnAnB is a solution to Mx = c if and only if
there exists an integer m, and Ai ∈ RnA×nA , Bi ∈ RnB×nB for i = 1, 2 . . . ,m such that
c = vec(C) and x = vec(X), where X is a solution to (2.3).

Proof. We know that (2.3) is equivalent to (2.4). Hence, it is enough to show that any
matrix M ∈ RnAnB×nAnB can be written on the form (2.4) for some Ai and Bi. Let mk,`

be the element in row k and column ` of M . By a direct calculation, albeit somewhat
tedious, it can be seen that

M =

nB∑
i1=1

nB∑
i2=1

nA∑
i3=1

nA∑
i4=1

mi3+(i1−1)nA, i4+(i2−1)nA

(
ei1e

T
i2

)
⊗
(
ei3e

T
i4

)
.

Then by using a one-to-one mapping between the multi-index (i1, i2, i3, i4) and the index
i = 1, 2, . . . , n2

An
2
B , given by 1 ↔ (1, 1, 1, 1), 2 ↔ (1, 1, 1, 2), . . . , nA ↔ (1, 1, 1, nA),

nA + 1 ↔ (1, 1, 2, 1), . . . , n2
An

2
B ↔ (nB , nB , nA, nA), we define the matrices Bi :=

mi3+(i1−1)nA, i4+(i2−1)nA

(
ei1e

T
i2

)
and Ai :=

(
ei3e

T
i4

)
. Thus, the equation Mx = c can

be written on the form (2.4). Since M was arbitrary the conclusion follows.

The linear-systems formulation (2.4) uniquely characterize the solvability and gives
a means to compute the solution to (2.3). For a longer discussion see the review [83].

4We will mostly consider real problems, although a lot of the theory is valid also for complex matrices.
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However, computing X via the Kronecker form (with a direct method) has complexity
about O(n6), for nA = nB = n . Because of Proposition 2.3.1 this is as good as can be
expected for the general case. Nevertheless, in special cases it is possible to use the special
structures of (2.3) to create vastly more efficient algorithms. We thus treat common and
important special cases below.

The Lyapunov and the Sylvester equation

The two most common special cases of (2.3) are the Lyapunov equation

AX +XAT = CCT , (2.5)

and the Sylvester equation

AX +XBT = C1C
T
2 , (2.6)

where we typically (for simplicity) consider A,B ∈ Rn×n, and C,C1, C2 ∈ Rn×r. It can
be observed that the Sylvester equation is a generalization of the Lyapunov equation in the
sense that (2.5) is obtained from (2.6) with B = A and C1 = C2 = C. Both equations
appear frequently and in a large variety of applications; e.g., in

• the study of dynamical systems. More specifically, in investigation of stability of
time-invariant linear systems [78, 96, 5, 53]; and more importantly when considering
controllability/observability via Gramians, as well as associated model reduction
techniques [17, 5, 53].

• Newton–Kleinman-type methods for computations of solutions to the algebraic Ric-
cati equation [77, 19].

• Newton’s method for computing the matrix square root [63, Section 6.3].

• blocked Schur–Parlett-type methods for computing matrix functions [33, 63]. More
generally, for matrix function evaluation where the eigenvalue-separation idea is
achieved with the block-triangularization; see, e.g., [97] for a historical reference,
and [45] for a recent application.

• general block-triangularization. See Proposition 2.3.15 below (page 26).

• computation of solutions to discretized partial differential equations defined on rect-
angular domains. See, e.g., [24] and [87] for early accounts of discretizations similar
to Paper A, and [51, Section 4.8.4] for a more recent discussion. It is also treated in,
e.g., [128].

• some image processing problems [29, 26, 139].

We will occasionally come across what we call the two-sided Sylvester equation, a
generalization of the Sylvester equation (2.6) defined as

A1XB
T
1 +A2XB

T
2 = C1C

T
2 , (2.7)
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where we typically (for simplicity) considerA1, A2, B1, B2 ∈ Rn×n, andC1, C2 ∈ Rn×r.
The two-sided equation is a generalization of the Sylvester equation since the latter comes
as a special case of the former with B1 = A2 = I. We use the name two-sided Sylvester
equation for (2.7), and although the name is not standard in the literature it helps dis-
tinguishing equation (2.7) from the “generalized” equations introduced below; see Re-
mark 2.3.34 (page 42).

The literature related to the Lyapunov and Sylvester equations is large. For complete-
ness we summarize some well-known results below. We start with a specialization of (2.4).

Proposition 2.3.2. Let A,B ∈ Rn×n, and C1, C2 ∈ Rn×r. A matrix X ∈ Rn×n solves
the Sylvester equation (2.6) if and only if the vector x = vec(X) solves

((I ⊗A) + (B ⊗ I))x = c, (2.8)

where c = vec(C1C
T
2 ). Equation (2.8) is known as the Kronecker form.

The solvability of (2.8) is characterized by the eigenvalues of the system matrix in
(2.8), i.e., (I⊗A) + (B⊗ I). We note that those eigenvalues are given by λA+λB , where
λA, λB are the respective eigenvalues of A and B (point 6 in Proposition 2.1.27). Hence,
the following characterization of the solvability of the Sylvester equation follows.

Proposition 2.3.3 ([69, Theorem 4.4.6]). Let A,B ∈ Rn×n, and C1, C2 ∈ Rn×r. The
Sylvester equation (2.6) has a unique solution if and only if the spectra of A and −B are
disjoint, i.e., σ(A) ∩ σ(−B) = ∅.

There exists generalization of the above theorem for the case of the two-sided Sylvester
equation. The condition on the spectrum of the coefficient matrices is generalized to the
spectrum of corresponding matrix pencils.

Proposition 2.3.4 ( [30, Theorem 1]). Let A1, A2, B1, B2 ∈ Rn×n, C1, C2 ∈ Rn×r. The
two-sided Sylvester equation (2.7) has a unique solution if and only if the pencils (A1, A2)
and (−B2, B1) are regular, and their spectra disjoint, i.e., σ(A1, A2) ∩ σ(−B2, B1) = ∅.

Since the Lyapunov equation can be considered a special case of the Sylvester equation,
the existence and uniqueness for (2.5) follows from Proposition 2.3.3.

Corollary 2.3.5. Let A ∈ Rn×n, and C ∈ Rn×r. The Lyapunov equation (2.5) has a
unique solution if and only if there are no eigenvalues λ ∈ σ(A) such that −λ ∈ σ(A).

The Lyapunov equation exhibits more structure than the Sylvester equation. Something
that is reflected in the properties of the solution.

Proposition 2.3.6. Let A ∈ Rn×n, and C ∈ Rn×r. If the Lyapunov equation (2.5) has at
least one solution, then it has a symmetric solution. Specifically, if the Lyapunov equation
has a unique solution, then the solution is symmetric.
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Proof. Assume that X solves the Lyapunov equation. Transposing the equation yields

AXT +XTAT = CCT .

Hence, XT solves the Lyapunov equation. If the solution is unique, then X = XT ,
otherwise X +XT is, by linearity, a symmetric solution.

In the theory of dynamical systems the class of stable matrices is important. By defi-
nition these matrices automatically fulfill the eigenvalue requirement in Proposition 2.3.3,
which we summarize in the following result.

Corollary 2.3.7. Let A,B ∈ Rn×n, C1, C2 ∈ Rn×r. If A and B are stable matrices, then
the Sylvester equation (2.6) has a unique solution.

However, when considering dynamical systems, the Lyapunov equation is more com-
monly occurring. For the Lyapunov equation with stable coefficients there is an even
stronger result; see, e.g., [48, Section XV] or citeAntoulas:2005:Approximation.

Proposition 2.3.8. Let A ∈ Rn×n be stable, and let C ∈ Rn×r. The Lyapunov equation
(2.5) has a unique solution which is symmetric and negative semidefinite. Moreover, if
CCT is positive definite, then the unique solution is negative definite.

To see that the positive definiteness of CCT is required to guarantee the negative def-
initeness of the solution we look at a classical counterexample. Let A be symmetric and
stable. Moreover, let C be an eigenvector to A. Then X , the solution to the Lyapunov
equation, is a scaled version of CCT , and hence only rank 1. In the symmetric case this
counterexample works when CCT does not have full rank, since due to linearity X can
be constructed from a sum of rank-1 examples. The assumption of positive definiteness
of CCT can be loosened to the pair (A,C) being a controllable pair, i.e., the matrix[
C AC . . . An−1C

]
∈ Rx×nr has full row rank. To see why the controllability cri-

terion effectively prohibits the previous counter example we note that the full row rank
is equivalent to the controllability matrix having n columns that are linearly independent.
The latter is in turn equivalent to that the smallest invariant subspace of A containing the
subspace (of Rn) spanned by the columns of C, is of dimension n. Note that if CCT is
positive definite, then C is full rank, and hence (A,C) is a controllable pair.

The following few results characterize the solution in different ways, and as such they
may form bases for different types of solution methods. The first result is according to
some sources due to Heinz, see [125, 23], although other sources attributes it to Krein, see
[83].

Proposition 2.3.9 ([59, Satz 5]5). Let A,B ∈ Rn×n, C1, C2 ∈ Rn×r. If A and B are
stable matrices, then the unique solution to the Sylvester equation (2.6) is given by

X = −
∫ ∞

0

eAtC1C
T
2 e

BT tdt.

5See the footnote on Page 12.
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Proof. First, the existence and uniqueness of the solution to (2.6) is asserted by Corol-
lary 2.3.7. Second, the integral definingX converges sinceA andB have eigenvalues with
negative real parts. Last, to see that the defined X is the solution to (2.6) we substitute the
expression into the left-hand side of (2.6) and thus get

AX +XBT = −A
(∫ ∞

0

eAtC1C
T
2 e

BT tdt

)
−
(∫ ∞

0

eAtC1C
T
2 e

BT tdt

)
BT

= −
∫ ∞

0

AeAtC1C
T
2 e

BT t + eAtC1C
T
2 e

BT tBT dt

= −
∫ ∞

0

d

dt

(
eAtC1C

T
2 e

BT t
)
dt = −

[
eAtC1C

T
2 e

BT t
]∞

0
= C1C

T
2 .

The provided proof is a verification, as opposed to a construction. However, intuition
can be gained from considering that

1

a
= −

∫ ∞
0

eatdt,

for a scalar a ∈ C such that Re(a) < 0. Hence, the integral in Proposition 2.3.9 can be
understood as an extension to the Sylvester operator; see also Proposition 2.2.20 (page 19).
A more general, constructive, proof for tensors is found in [52, Section 2]. A related
integral, that can also be used to prove the proposition above, was presented by Rosenblum
in [111]. See also [23]. A recent treatment is due to Wimmer [140], who generalized the
result to the two-sided Sylvester equation. See also [5, Remark 6.1.1].

Proposition 2.3.10 ([140, Theorem 2.1]). Let A1, A2, B1, B2 ∈ Rn×n, C1, C2 ∈ Rn×r.
Moreover, let the pencils (A1, A2) and (−B2, B1) be regular, and their spectra disjoint,
i.e., σ(A1, A2) ∩ σ(−B2, B1) = ∅. Then there exists a simple and closed contour Γ such
that σ(A1, A2) is in the interior and σ(−B2, B1) in the exterior. Moreover, the unique
solution to the two-sided Sylvester equation (2.7) is given by

X =
1

2πi

∫
Γ

(zA1 −A2)−1C1C
T
2 (zBT1 +BT2 )−1dz.

For the Sylvester equation we get the following corollary, see, e.g., [83, Theorem 6].

Corollary 2.3.11. Let A,B ∈ Rn×n, C1, C2 ∈ Rn×r, and let σ(A) ∩ σ(−B) = ∅. Then
there exists a simple and closed contour Γ such that σ(A) is in the interior and σ(−B) in
the exterior. Moreover, the unique solution to the Sylvester equation (2.6) is given by

X =
1

2πi

∫
Γ

(zI −A)−1C1C
T
2 (zI +BT )−1dz.

For the stable Lyapunov equation, the contour can be taken around the right-half plane,
with only integration over the imaginary axis giving nonzero contribution. The result is
described as the Fourier transform of the integral in Proposition 2.3.9 and is as follows.
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Corollary 2.3.12 ([5, Equations (4.51) and (6.10)]). Let A ∈ Rn×n, C ∈ Rn×r. If A is a
stable matrix, then the unique solution to the Lyapunov equation (2.5) is given by

X = − 1

2π

∫ ∞
−∞

(izI −A)−1CCT (−izI −AT )−1dz.

The solution to the Sylvester equation can also be described in terms of an ordinary
differential equation (ODE).

Proposition 2.3.13 ([14, Chapter 10], [34]). Let A,B ∈ Rn×n, C1, C2 ∈ Rn×r, and let
A and B be stable matrices. Consider the matrix differential equation

Ẏ (t) = AY (t) + Y (t)BT − C1C
T
2 ,

with initial value Y (0) = Y0. The unique solution is Y (t) = eAt(Y0−X)eB
T t+X , where

X is the unique solution to the Sylvester equation (2.6). Moreover, X = limt→∞ Y (t).

Proof. The solution to the differential equation can be obtained by vectorizing the system
to a standard ordinary differential equation (similar to Proposition 2.3.2). The matrix-
form follows from e((I⊗A)+(B⊗I))t = eI⊗AteBt⊗I = (I ⊗ eAt)(eBt ⊗ I) = eBt ⊗ eAt.
Commutation of (I ⊗A) and (B ⊗ I) follows from point 4 in Proposition 2.1.27.

Proposition 2.3.14 ([127, Equation (3)]). Let A,B ∈ Rn×n, and C := C1C
T
2 where

C1, C2 ∈ Rn×r. If A and B are stable matrices, then the unique solution to the Sylvester
equation (2.6) is given by

X =
∞∑
i=0

ÃiC̃B̃i,

where Ã = (qI − A)−1(qI + A), B̃ = (qI − BT )−1(qI + BT ), and C̃ = −2q(qI −
A)−1C(qI −BT )−1, with q ∈ R a scalar such that q > 0, q /∈ σ(−A), and q /∈ σ(−B).6

Proof. The idea is to rewrite the Sylvester equation to a type of Stein equation, by noticing
that (qI − A)X(qI − BT ) − (qI + A)X(qI + BT ) = −2q(AX + XBT ) = −2qC,
which is equivalent to X − ÃXB̃ = C̃. The latter has a convergent series solution since
ρ(Ã) < 1 and ρ(B̃) < 1.

Smith uses that f(z) := (qI − z)−1(qI + z) maps the left-half plane into the disk
with radius less than one. The proof reveals a correspondence between a solution to the
Lyapunov and the Stein equation. The latter was pointed out by Smith already in [126,
Theorem 3], and presented by Power who points out that f(z) = I + 2(z − I)−1 [105],
although it was also known before [10]. Hence, a (continuous time) stable matrix, can be
mapped to a discrete (time) stable matrix, i.e., a matrix with spectral radius less than one.

The following result is a classical characterization of existence and is called Roth’s
solvability criterion. It originates from [112]. For later accounts see, e.g., [69, Theo-
rem 4.4.22], [5, Proposition 6.1], or [125, Equation (19)].

6For notational convenience the matrix B̃ is defined using BT .
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Proposition 2.3.15 ([112]). Let A,B ∈ Rn×n, and C := C1C
T
2 where C1, C2 ∈ Rn×r.

The Sylvester equation (2.6) has a solution if and only if[
A −C
0 −BT

]
is similar to

[
A 0
0 −BT

]
.

Furthermore, the similarity transformation is given by[
I X
0 I

]
which has the inverse

[
I −X
0 I

]
,

where X is a solution to (2.6).

Roth’s solvability criterion can be used to prove certain characterizations of the solution
to the Sylvester equation, as in [7, 109]. There is also a related analysis, of a related block-
matrix, connected with the algebraic Riccati equation; see [103, 4, 109].

Proposition 2.3.16 ([7]). Let A,B ∈ Rn×n, and C := C1C
T
2 where C1, C2 ∈ Rn×r.

Assume that the spectra of A and −B is disjoint, i.e., σ(A) ∩ σ(−B) = ∅. Define

G :=

[
A −C
0 −BT

]
∈ R2n×2n.

Moreover, let E :=
[
NT MT

]T ∈ C2n×n, be part of a (partial) Jordan decomposition
of G such that GE = EJB , where JB is a Jordan matrix corresponding to −BT . It
holds that M is nonsingular, and unique solution to the Sylvester equation (2.6) is given
by X = NM−1.

Proof. Existence and uniqueness follows from the spectra of A and B (Proposition 2.3.3),
and the rest follows from Roth’s solvability criterion (Proposition 2.3.15). We have that

EJB = GE =

[
I X
0 I

] [
A 0
0 −BT

] [
I −X
0 I

] [
N
M

]
.

First, from the bottom row we find that MJB = −BTM , and hence M is the set gener-
alized eigenvectors of B constituting the similarity transform of the Jordan decomposition
corresponding to JB . Thus, M is nonsingular. Second, from the top row we have

NJB = AN −AXM −XBTM = AN − CM.

We multiply with M−1 from the right and utilize JBM−1 = −M−1BT to get

C = A(NM−1) + (NM−1)BT .

Thus, NM−1 is a solution to the Sylvester equation, and from uniqueness X = NM−1.

26



2.3. Linear Matrix Equations

Proposition 2.3.17 ([109]). Let A,B ∈ Rn×n, and C := C1C
T
2 where C1, C2 ∈ Rn×r.

If A and B are stable matrices, then the unique solution to the Sylvester equation (2.6) is
given by X such that [

−I 2X
0 I

]
= sign

([
A −C
0 −BT

])
Proof. Existence and uniqueness follows from stability of A and B (Corollary 2.3.7). The
rest of the proof follows from Roth’s solvability criterion (Proposition 2.3.15) and the
properties of the matrix sign function. Direct calculations give

sign

([
A −C
0 −BT

])
=

[
I X
0 I

]
sign

([
A 0
0 −BT

])[
I −X
0 I

]
=

[
I X
0 I

] [
−I 0
0 I

] [
I −X
0 I

]
=

[
−I 2X
0 I

]
.

Using Proposition 2.3.17, the sign function can be expressed using the Dunford–Taylor
integral formula (Definition 2.2.2), thus giving an integral expression for the solution of the
Sylvester equation in the following way.

Proposition 2.3.18 ([109], [63, Equation (5.3)]). Let A,B ∈ Rn×n, and C := C1C
T
2

where C1, C2 ∈ Rn×r. If A and B are stable matrices, then the unique solution to the
Sylvester equation (2.6) is given by X such that

[
−I 2X
0 I

]
=

2

π

[
A −C
0 −BT

] ∫ ∞
0

(
t2I +

[
A −C
0 −BT

]2
)−1

dt.

The result can be re-written by multiplication with the block vector
[
0 I/2

]T
from

the right, and
[
I 0

]
from the left, and exploiting a Schur-complement technique on the

inverse in the integrand. We arrive at the following related characterization of the solution.

Corollary 2.3.19. Let A,B ∈ Rn×n, and C := C1C
T
2 where C1, C2 ∈ Rn×r. If A and B

are stable matrices, then the unique solution to the Sylvester equation (2.6) is given by

X =
−1

π

∫ ∞
0

(
A2 + t2I

)−1 (
ACBT + t2C

) (
(BT )2 + t2I

)−1
dt

=
−1

π

∫ ∞
0

(
A+ t2A−1

)−1 (
C + t2A−1CB−T

) (
BT + t2B−T

)−1
dt

=
−1

π

∫ ∞
0

(
A(t) +A(t)−1

)−1
(

1

t2
C +A−1CB−T

)(
B(t)T +B(t)−T

)−1
dt,

where, on the last line, we have defined A(t) := A/t and B(t) := B/t.
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The solution to the Sylvester and the Lyapunov equation can also be characterized as
optimal solutions to certain optimization problems. The first one presented below is a
standard residual minimization, stated here for completeness. The norm in the objective
function can be essentially any matrix norm.

Proposition 2.3.20. Let A,B ∈ Rn×n, C1, C2 ∈ Rn×r, and let σ(A) ∩ σ(−B) = ∅. The
unique solution to the Sylvester equation (2.6) is the optimal solution to

min
Y

‖R‖2

s.t. R = AY + Y BT − C1C
T
2 .

Proof. First, the existence and uniqueness of the solution, call it X , to (2.6) is asserted by
Corollary 2.3.7. Second, it follows that ‖R‖2 > 0 if Y 6= X and ‖R‖2 = 0 if Y = X .

The following proposition is specialized for the Lyapunov equation.

Proposition 2.3.21. Let A ∈ Rn×n be stable, and let C ∈ Rn×r. The unique solution to
the Lyapunov equation (2.5) is the optimal solution to

max
Y

− Tr(Y )

s.t. AY + Y AT − CCT � 0

Y = Y T .

Proof. The Lyapunov equation has a unique solution, call it X , that is symmetric and neg-
ative semidefinite (Proposition 2.3.8). The proof is based on the residual equation. Take
any feasible Y such thatR := AY +Y AT −CCT ≺ 0, and note thatR = RT . Consider
E := X − Y which, from linearity we know fulfills AE +EAT = −R. Furthermore, we
know that E is nonzero, symmetric, and negative semidefinite (Proposition 2.3.8). Thus,
0 < −Tr(E) = −Tr(X)− (−Tr(Y )), implying that −Tr(Y ) < −Tr(X), from which
the result follows.

We close the section with some remarks on the naming convention in the literature, on
the history of the names Lyapunov and Sylvester, and on (controllability) Gramians.

Remark 2.3.22 (Conventions in the literature). We call (2.5) the Lyapunov equation, as is
done in some parts of the literature [5, Equation (6.2)]. The name can also, see [69], refer
to the equation

XA+ATX = CCT .

However, the latter formulation is equivalent in the sense that it is just a matter of how the
matrix A is defined. Similarly, and due to its connection to systems theory, in parts of the
literature the Lyapunov equation is written as

AX +XAT + CCT = 0,
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see [5, Equation (4.45)], and also Paper C. The latter is simply a way to prescribe that the
right-hand side is negative semidefinite.

Analogously we call (2.6) the Sylvester equation, as is also done in parts of the litera-
ture, e.g., [80]. In other parts of the literature the name refers to equations of the form

AX +XB = C1C
T
2 , or AX −XB = C1C

T
2 ,

see [51]. Similar to the Lyapunov case, it is just a question of how the matrix B is defined.
The formulations (2.5) and (2.6) are natural from our perspective since the equations

are written as linear-operator-acting-on-unknown equals right-hand-side, and convenient
when working with projection methods; typically Krylov subspaces. Moreover, the gener-
alization from Lyapunov to Sylvester is immediate.

It shall also be noted that in some parts of the literature, e.g., [49, 140], the equation

AXAT −X + CCT = 0

is called the (discrete time) Lyapunov equation, because it has an analogous connection to
discrete time dynamical systems [5]. The latter equation is also known as the Stein equa-
tion, see [125, Section 6]. For a relation with the Lyapunov equation see [83, Section 5],
[5, Section 4.3.3], or Proposition 2.3.14.

Remark 2.3.23 (Lyapunov). The name Lyapunov is attached to equation (2.5) in honor of
his contributions to stability theory of dynamical systems [125]. The Lyapunov equation
plays a key role in the stability analysis of linear dynamical systems; see, e.g., [48, Sec-
tions XIV and XV]. For example, the solution can be used to construct Lyapunov functions;
see, e.g., [126, 35], [96, Section 4.3], and [78, remark following Theorem 21.1]. To the
best of our knowledge, it seems as if the name Lyapunov was attached to equation (2.5)
some time during the mid to late 1960s. In some earlier treatements, e.g., the 1932 paper
by Rutherford [117] and the 1952 paper by Roth [112], the name Lyapunov seems not to be
associated with (2.5). Neither the book [48] from 1959 (Russian 1953), nor the book [78]
from 1963, nor the paper [88] by Ma from 1966, nor the paper [127] by Smith from 1968,
seems to directly connect the name Lyapunov directly with the matrix equation. However,
in a series of notes from 1966–1967 Barnett and Storey begin to call equation (2.5) for the
Lyapunov equation [9, 8, 10, 12]. Also Power references (2.5) as the Lyapunov equation
in 1967 [105, 106]. The transcription “Liapunov” is used for (2.5) in 1967 by Barnett and
Storey [11], and in 1968 by Davison and Man [35]. These may or may not be the first
instances where (2.5) is called the Lyapunov equation, but nevertheless, in the light of the
above cited literature, they give indications of the spread of the name. In the 1970 review
paper [83] by Lancaster the name Lyapunov is attached to the matrix equation, and seems
to have established the convention of calling (2.5) the Lyapunov equation.

Remark 2.3.24 (Sylvester). Equation (2.6) is called the Sylvester equation since the 1884
work by Sylvester [131]7 is regarded as the first work on the problem; see [125]. The equa-
tion is sometimes also named the Sylvester–Rosenblum equation due to the early results by
Rosenblum on the operator case, presented in [111]; see also [23].

7See the footnote on Page 12.
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Remark 2.3.25 (Gramian). Let A ∈ Rn×n be stable, and let C ∈ Rn×r. Consider the
linear time-invariant control system ẋ(t) = Ax(t) + Cu(t), x(0) = 0, where x(t) ∈ Rn
is the state and u(t) ∈ Rr is the control input. The impulse response is resulting from
applying the input ui(t) = δ(t) for i = 1, 2, . . . , r, where δ(t) is the Dirac delta function.
If we denote the impulse response with h(t), then h(t) = eAtC. The Gramian of the
functions given by the components, h1(t), h2(t), . . . , hn(t), is defined as

G :=


〈h1(t), h1(t)〉 〈h1(t), h2(t)〉 . . . 〈h1(t), hn(t)〉
〈h2(t), h1(t)〉 〈h2(t), h2(t)〉 . . . 〈h2(t), hn(t)〉

...
...

. . .
...

〈hn(t), h1(t)〉 〈hn(t), h2(t)〉 . . . 〈hn(t), hn(t)〉

 =

∫ ∞
0

eAtC
(
eAtC

)T
dt.

Hence, from Proposition 2.3.9 we have that G, the controllability Gramian, is the unique
solution to the Lyapunov equation

AG+GAT + CCT = 0.

Moreover, the Gramian is nonsingular if and only if the vectors are linearly independent
[48, Chapter IX][70, Theorem 7.2.10][14, Chapter 4]. Hence, the controllability Gramian
G is nonsingular (and thus full rank) if and only if the components of the impulse response
are linearly independent functions. Less formally that means if and only if the system can
be steered to an arbitrary point in Rn by the use of a control consisting of a sum of Dirac
delta pulses. Compare with the discussion above on the definiteness of the solution to the
Lyapunov equation and relation to controllable pair (page 23).

A similar discussion is found in [5, Chapter 4]. The associated Lyapunov equation is
formulated in a slightly different way compared to (2.5), see Remark 2.3.22 above.

Computational methods for the Lyapunov and the Sylvester equation

There exists a plethora of algorithms for the Lyapunov and the Sylvester equation, all with
different aspects, strengths, and weaknesses. Some are designed for computing the ex-
act solution, while others are aimed at computing approximations thereof. We give an
overview of a few here, with special focus on iterative methods, and more precisely pro-
jection methods, as these are further treated in Papers B and C.

Kronecker-form methods

As mentioned in the introduction to the section, one class of methods for solving a linear
matrix equation can be derived by directly utilize the Kronecker form. For the Sylvester
equation the system needed to be solved is given by Proposition 2.3.2, i.e.,

((I ⊗A) + (B ⊗ I))x = c.

The most naive way to solve the linear system is to use a direct solver. However, the system
is typically large since (I⊗A)+(B⊗I) ∈ Rn2×n2

. Thus, a direct method quickly become
prohibitively expensive.
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Another way to utilize the Kronecker form is to use a iterative solver to compute a
solution (or approximation thereof). The large matrix (I ⊗ A) + (B ⊗ I) does not need
to be formed, since that action of the matrix on a vector v ∈ Rn2

can be implemented
using the relation ((I ⊗A) + (B ⊗ I))v = vec(AV + V BT ), where V ∈ Rn×n such that
v = vec(V ). It is also possible incorporate preconditioners. This is similar to the approach
used in Paper A. See [66] for an early account on preconditioners. These subspace methods
come close to the projection methods treated below; see [71] for tensorized Krylov methods
for the Sylvester equation, and [82] for higher order tensors.

It is also possible to exploit the Kronecker form by applying a classical method for
linear systems, which can be set in the matrix equation context by reversing the Kronecker
form. Such a derivation is exploited in, e.g., [128] where a block version of the successive
over-relaxation (SOR) is adapted to the Sylvester equation.

Decomposition methods

As the name suggests this class of methods is based on different decompositions of the
coefficient matrices. The most famous method is probably the Bartels–Stewart algorithm
[13]. To explain the idea we start by considering the simplest case, which we call the di-
agonalization method. Consider the Sylvester equation (2.6) under the further assumption
that A and B are diagonalizable, i.e., A = V ΛAV

−1, and B = WΛBW
−1. We can

rewrite the equation in the following equivalent ways:

AX +XBT = C1C
T
2

V ΛAV
−1X +XW−TΛBW

T = C1C
T
2

ΛAV
−1XW−T + V −1XW−TΛB = V −1C1C

T
2 W

−T

ΛAY + Y ΛB = C̃,

where X = V YWT and C̃ = V −1CW−T . The solution Y to the new matrix equation is
given by

Yk,` =
C̃k,`

[ΛA]k,k + [ΛB ]`,`
.

See, e.g., [88, Equation (11)] or [125, Section 4]. Hence, the computation of Y is simple,
and from Y we can get X directly. Still, the method as such is of limited use since A and
B needs to be diagonalizable, and diagonalization can be numerically unstable. However,
in special cases, where the diagonalization is stable and efficient, the method can be useful.
See, e.g., Paper A.

A generalized approach to solving (2.6) was presented by Rutherford in [117] and re-
fined by Ma in [88]. In this approach the matrices A and B are not diagonalized, instead
their Jordan form are computed (Proposition 2.1.15) and small scale Sylvester equations
are solved in a structured way. Similarly, in [106] Power presents solution methods based
on the Schwarz and Routh canonical forms. However, these methods are of limited practi-
cal application.
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The idea of the Bartels–Stewart algorithm [13] is similar to the methods above, but
the method utilizes the Schur decomposition (Proposition 2.1.16). Let A = V TAV

T and
B = WTBW

T be Schur decompositions, where V and W are orthogonal matrices. A
similar derivation as above leads to the transformed matrix equation

TAY + Y TTB = C̃,

where X = V YWT and C̃ = V TCW . The transformed equation can then be solved
using a backward substitution technique.8 More precisely, Let yi and c̃i be the ith columns
of Y and C̃, respectively, then the columns of Y can be computed by solving the triangular
systems of equations, (

TA −
[
TTB
]
i,i
I
)
yi = c̃i −

i−1∑
k=1

[
TTB
]
k,i
yk.

Note that there are specializations using the real Schur decomposition that can be used
if the constituent matrices are real. In such case, the backward substitution is somewhat
more technical. Although algorithms for computing Schur decompositions are inherently
iterative in nature [133, Lectures 24-25], it is generally argued that the Bartels–Stewart
algorithm is a direct method and the complexity, for nA = nB = n, is O(n3). Some
advantages of the Bartels–Stewart algorithm is that there exists Schur decompositions for
all matrices, and that the transformations involve orthogonal matrices and hence have good
numerical properties.

Remark 2.3.26 (The two-sided equation). A similar technique can be applied to the two-
sided Sylvester equation (2.7), i.e., A1XB

T
1 + A2XB

T
2 = C1C

T
2 . The solution method

utilizes the QZ decomposition (Proposition 2.1.23). The decomposition does not constitute
a similarity transform, but can be used to simultaneously reduce two matrices to triangular
form using a pair of orthogonal matrices. The matrix pairs A1, A2 and B1, B2 are jointly
reduced, allowing for a transformation of the equation similar to above. Compare the
existence criterion in Proposition 2.3.4 and the relation between eigenvalues of pencils and
the QZ decomposition in Proposition 2.1.24. See [30, 49, 100] for a further discussion.

Smith method

What has come to be called the Smith method was presented by Smith in [127]. In the
paper, Smith also presents Proposition 2.3.14, and the method is based on truncating the
infinite sum and compute it iteratively in a cleaver way. More precisely, the iteration is

Yk+1 = Yk + Ã2k

YkB̃
2k

, k = 0, 1, . . . ,

with Y0 = C̃, where Ã, B̃, and C̃ are given in Proposition 2.3.14. It can be shown
that Yk =

∑2k−1
i=0 ÃiC̃B̃i, and by noticing that Ã2k

= Ã2k−1

Ã2k−1

, the method can be
implemented using five matrix-matrix multiplications per step.

8Note that the equivalent linear system for the transformed matrix equation is (block) triangular.
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A similar method was, at the same time, proposed for the Lyapunov equation [35].
Davison and Man base their derivation on Crank–Nicolson integration of the corresponding
Lyapunov function. In their case Ã := (I −Ah/2 +A2h2/12)−1(I +Ah/2 +A2h2/12),
and B̃ analogously but with AT , and C̃ = hCCT . The step-size h is suggested to be set
to h = 1/(200ρ(A)).

ADI iteration

The ADI iteration (Alternating Direction Implicit), sometimes known as the Peaceman–
Rachford iteration was presented in 1955 by Peaceman and Rachford [98, 119]. For the
Sylvester equation it can be seen as a generalization of the Smith method; see [44, 138] and
[125, Section 4.4.2], and the method was presented in 1986 by Ellner and Wachspress [44].
Observe that the identity used in the proof of Proposition 2.3.14 can be generalized to

(qI −A)X(pI −BT )− (pI +A)X(qI +BT ) = −(q + p)C1C
T
2 ,

and hence a similar result as Proposition 2.3.14 holds true, with direct analogues to Ã
and B̃. Thus, the Smith iteration can be generalized. Specifically, Ellner and Wachspress
notice that q and p should be optimized to minimize the spectral radius of Ã and B̃, which
leads to the ADI min-max problem. Wachspress [138] presents the method in the classical
ADI-form

(A+ piI)Xi−1/2 = C1C
T
2 −Xi−1(BT − piI)

Xi(B
T + qiI) = C1C

T
2 − (A− qiI)Xi−1/2,

where the shifts pi and qi can be different in each iteration. Finding appropriate shifts is
of great importance for the method to be efficient; for shift-search strategies see, e.g., [18]
for recent development. There are also versions of the method that computes a low-rank
factorization directly, developed in works such as [101, 84, 20]. The latter works also
which partially covers shift search. An overview can be found in [125].

Sign-function iteration

The sign-function iteration, sometimes called sign-function algorithm, was originally pre-
sented by Roberts in [109]. The algorithm is based on Proposition 2.3.17, together with an
iterative method for computing the matrix sign function. One way to achieve the latter is to
consider the equation f(X) = X2 − I , and noticing that sign(X) is a root of f(X) = 0.
The Newton iteration turns out to be

Zk+1 =
Zk + Z−1

k

2
, k = 0, 1, . . . ,

with Z0 = A. It holds that limk→∞ Zk = sign(A); the convergence is global and
quadratic. See, e.g., [109], [63, Chapter 5], or [51, Section 9.4.1] for further details and en-
hancements. The application of this for solving the Sylvester equation is straight forward
given the result in Proposition 2.3.17.
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Remark 2.3.27 (Riccati equation). An analogous technique can also be applied to solve
the algebraic Riccati equation. The result is also presented in [109].

Optimization methods

By the nature of Proposition 2.3.20, constructing an optimization-based method for the
Sylvester equation from the proposition would result in a method similar to a tensorized
solver for the Kronecker form, see above. For the stable Lyapunov equation it is possi-
ble to consider optimization methods based on the formulation in Proposition 2.3.21, or
versions thereof. The constraint is called a linear matrix inequality (LMI) and the opti-
mization problem could be approached with semidefinite programming (SDP), see, e.g.,
[54, Section 16.8] However, there are more advanced optimization based approaches to
compute approximations of the Lyapunov equation. In the paper [136] a Riemannian op-
timization method is proposed for computing low-rank solutions to large-scale Lyapunov
equations with symmetric positive definite coefficients. The optimization minimizes the
objective function Tr(XAX)−Tr(XC), over the smooth manifold of symmetric positive
semidefinite matrices of rank k. The objective function is based on the non-constant part of
a related energy norm of the actual error, similar to what is considered in [80] as well as in
Paper C. If the residual is not small enough when a minimum for the current optimization
is found, then the process is continued but on the manifold of rank k + 1 matrices.

General projection methods

The projection methods are part of a class of methods called subspace methods, and the
idea is to search for an approximation in a restricted subspace. As previously noted, a
linear matrix equation can be cast into a linear system, and hence projection methods for
matrix equations is tightly connected to projection methods for linear systems; a further in-
troduction to projection methods for linear systems can be found in, e.g., [119, Chapter 5].

There are two important factors for a projection method to be efficient: First, the prob-
lem needs to be well approximated in some restricted subspace; second, there must be an
efficient way of computing such a subspace. For matrix equations, the first condition means
that the solution matrix needs to be well approximated by a low-rank matrix, i.e., the so-
lution needs to exhibit a strong decay in singular values. In the literature this is frequently
expressed as the problem admitting low-rank solutions, although the exact solution may be
of full rank. What is meant by efficient in the second criterion will naturally depend on the
circumstances. However, comparing to direct methods for the Lyapunov and the Sylvester
equation which have complexityO(n3) gives an upper bound, and usually complexities of
the orderO(n2), or evenO(n) for sparse matrices, are desirable. In practice, the subspaces
are often iteratively constructed, and nested, such that the approximation can be improved
until desired accuracy is reached, although this is not always the case; see, e.g., applica-
tions of Iterative Rational Krylov Algorithm (IRKA) [56, 46] for solving the Lyapunov and
the Sylvester equation.

We consider a projection method for matrix equations to consist of constructing nested
subspaces Kk−1 ⊂ Kk ⊂ Rn, and Hk−1 ⊂ Hk ⊂ Rn, called the left and the right sub-
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space, respectively. Furthermore, we let Vk andWk be bases of Kk and Hk, respectively,
and for numerical reasons it is good to let these be orthonormal, i.e., VTk Vk = I and
WT

k Wk = I . We search for an approximation Xk such that columns of Xk are in Kk and
the rows are in Hk, i.e., Xk = Vk YkWT

k , where the matrix Yk needs to be determined
(and is much smaller than the matrixXk). However, from the formulation so far the matrix
Yk is not unique. A common way to determine Yk is to impose that the residual is orthog-
onal to the subspaces, where orthogonality is defined through the Frobenius inner product,
i.e, 〈A,B〉 = Tr(BTA) for A,B ∈ Rn×n. Let Kk and Hk be of dimension κ; a generic
element in our space is given by Vk ZWT

k . Hence, for all Z ∈ Rκ×κ, we require that

0 = 〈Rk, (Vk ZWT
k )〉 = Tr(Wk Z

T VTk Rk) = Tr(ZT VTk RkWk) = 〈VTk RkWk, Z〉,

where Rk := AXk + XkB
T − C1C

T
2 is the residual, and where Xk = Vk YkWT

k as
before. Since Z is arbitrary, we can conclude that the Galerkin condition9 is

VTk RkWk = 0.

The condition can be further simplified and the resulting equation from which Yk can be
determined is commonly known as the projected problem. For the Sylvester equation (2.6),
given the left and right subspaces from above, the projected problem is

AkYk + YkB
T
k = C1,kC

T
2,k,

where Ak = VTk AVk, Bk = WT
k BWk, C1,k = VTk C1, and C2,k = WT

k C2. The
computation of Yk can typically be done using methods for small to medium scale Sylvester
equations. Another way to make Yk unique is to enforce a Petrov–Galerkin condition, i.e.,
generate a separate trial and test space. More precisely, the process generates two extra
spaces, K̂k and Ĥk with corresponding orthogonal bases V̂k and Ŵk. The ansatz is still
Xk = Vk YkWT

k , but the Petrov–Galerkin condition is V̂
T

kRkŴk = 0.
We exemplify with a schematic algorithm utilizing a Galerkin projection, and target

the Lyapunov equation (2.5) for simplicity, e.g., only one space has to be generated. The
procedure is described in Algorithm 2.1. For the algorithm to be efficient, the two criteria
described above needs to carefully balanced (good approximation properties of the sub-
space, and efficient ways to construct the subspace). As an illustration consider extending
the subspace in Step 2 of Algorithm 2.1 with a random direction in Rn. In most cases such
construction is useless. It has a too high emphasis on the second criterion and does not
include (enough) information about the problem. Thus, the space does not, in the generic
case, have the desired approximation properties. On the contrary, an optimal projection
space of dimension k for approximating the solution to the Lyapunov equation would be
the space spanned by the k most dominant singular vectors of the actual solution of the
equation (in the sense of minimizing the error measured in the Frobenius norm). How-
ever, this idea is in the other extreme. The projection space has desired approximation

9We once again highlight the connection to projection methods for linear systems by pointing out that an
equivalent way of formulating the condition is (WT

k ⊗V
T
k ) vec(Rk) = 0; see, e.g., [125, Section 4.4.1], which

can be compared to [119, Chapter 5].
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properties, but the construction of the projection space in Step 2 is prohibitively expensive.
Hence, this construction is also useless for most problems.

Algorithm 2.1: A generic projection algorithm for the Lyapunov equatio (2.5)
input : A, C, tol
output: X

1 V0 = ∅
for k = 1, 2, . . . until convergence do

2 vk ← choose one or a few vectors in Rn
3 v̂k ← orthogonalize vk w.r.t. vk and Vk−1, and normalize
4 Vk = [Vk−1, v̂k]

5 Solve the projected problem AkYk + YkA
T
p = CkC

T
k ,

where Ak = VTk AVk, and Ck = VTk C
6 Xk = V Yk VTk
7 Rk = AXk +XkA

T − CCT
8 if ‖Rk‖ < tol then

Break

9 return X = Xk

Projection methods is a class of tools used in many different approximation algorithms.
One prime example is to evaluate matrix functions multiplied with vectors, such as, e.g.,
eAtC1. It is hence close at hand to think of methods based on evaluating the integrand
in Proposition 2.3.9, using a projection method. However, in [118] Saad showed that
approximating the integral of Proposition 2.3.9 using subspace techniques to approximate
the functions eAtC1 and eBtC2 is equivalent to a direct Galerkin projection of the Sylvester
equation (2.6).

Proposition 2.3.28 ([118, Theorem 4.2]). Let A,B ∈ Rn×n and C1, C2 ∈ Rn×r, and let
A and B be stable matrices. Moreover, let Kk andHk be two κ-dimensional subspaces of
Rn, and let Vk,Wk ∈ Rn×κ be orthonormal bases of respective subspace.

Assume that the matrices Ak := VTk AVk and Bk :=WT
k BWk are stable. Construct

an approximation to the solution of the Sylvester equation (2.6) by evaluating

Xk := −
∫ ∞

0

Vk eAkt VTk C1C
T
2 Wk e

BT
k tWT

k dt.

Moreover, construct a second approximation, we call it X̂k, by direct Galerkin projection,
i.e., X̂k := Vk ŶkWT

k , where Ŷk ∈ Rκ×κ is the solution to the projected problem

AkŶk + ŶkB
T
k = C1,kC

T
2,k,

where Ak, Bk are given above and C1,k := VTk C1, and C2,k :=WT
k C2.

Then Xk = X̂k.
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Proof. We have

Xk = Vk
(
−
∫ ∞

0

eAkt(VTk C1)(WT
k C2)T eB

T
k tdt

)
WT

k = Vk ŶkWT
k = X̂k.

The second equality follows since the integral is the solution to the projected problem.

The idea of the proof can be described as involving a trivariate matrix function T
of the matrix functions f(A), g(BT ), and h(C1C

T
2 ), i.e., the solution can be written as

X = T (f(A), g(BT ), h(C1C
T
2 )). Additionally, there is a special structure required in the

projection-approximation of T . More precisely, a projection is evaluated as Vk X̂kWT
k =

Vk T (f(Ak), g(BTk ), h(C1,kC
T
2,k))WT

k . Hence, the proof is easily adapted to the other
integral characterizations mentioned above. Moreover, an analogous result can be estab-
lished for the sign-function characterization in Proposition 2.3.17.

Proposition 2.3.29. Let A,B ∈ Rn×n and C1, C2 ∈ Rn×r, and let A and B be stable
matrices. Furthermore, let Kk and Hk be two κ-dimensional subspaces of Rn, and let
Vk,Wk ∈ Rn×κ be orthonormal bases of respective subspace.

Assume that the matrices Ak := VTk AVk and Bk :=WT
k BWk are stable. Construct

an approximation to the solution of the Sylvester equation (2.6) as Xk := Vk YkWT
k ,

where Yk is given by [
−I 2Yk
0 I

]
= sign

([
Ak −C1,kC

T
2,k

0 −BTk

])
Moreover, construct a second approximation, X̂k, by direct Galerkin projection, i.e., define
X̂k := Vk ŶkWT

k , where Ŷk ∈ Rκ×κ is the solution to the projected problem

AkŶk + ŶkB
T
k = C1,kC

T
2,k,

where Ak, Bk are given above and C1,k := VTk C1, and C2,k :=WT
k C2.

Then Xk = X̂k.

Proof. The sign-function approximation can be written as

Xk =
1

2

[
In 0n

] [Vk 0
0 Wk

]
sign

([
Ak −C1,kC

T
2,k

0 −BTk

])[
Vk 0
0 Wk

]T [
0n
In

]
= Vk

1

2

[
Iκ 0κ

]
sign

([
Ak −C1,kC

T
2,k

0 −BTk

])[
0κ
Iκ

]
WT

k ,

which is exactly on the aforementioned form.

A shorter proof would be to note that Xk = X̂k since Yk = Ŷk, and the latter follows
since from construction Yk also solves the projected problem (which is unique). However,
the former highlights the aforementioned structure and that the matrix sign-function is
approximated using the specially structured basis[

Vk 0
0 Wk

]
∈ R2n×2κ.
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Remark 2.3.30. In Propositions 2.3.28 and 2.3.29 we assume that the projected matrices
Ak and Bk were stable. If A and B are symmetric, then stability follows directly from neg-
ative definiteness (Proposition 2.1.10), since also the projected matrices are symmetric and
negative definite. However, the example following Proposition 2.1.10 (page 7) illustrates
why this is not the case for a non-symmetric matrix.

Krylov subspace methods

One particular class of spaces commonly used in connection to the Lyapunov and the
Sylvester equation are Krylov-type subspaces. These subspaces are widely used in many
fields and problems. With the notation used in the previous section for left and right sub-
spaces, we have the following different types of Krylov subspaces: The Krylov subspaces

Kk := span
{
C1, AC1, . . . , A

kC1

}
Hk := span

{
C2, BC2, . . . , B

kC2

}
,

the extended Krylov subspaces

Kk := span
{
C1, A

−1C1, AC1, A
−2C1 . . . , A

kC1, A
−k−1C1

}
Hk := span

{
C2, B

−1C2, BC2, B
−2C2 . . . , B

kC2, B
−k−1C2

}
,

and the rational Krylov subspaces

Kk := span

{
C1, (s

a
1I −A)−1C1, . . . ,

k∏
i=1

(sai I −A)−1C1

}

Hk := span

{
C2, (s

b
1I −B)−1C2, . . . ,

k∏
i=1

(sbiI −B)−1C2

}
,

where the two sequences of complex shifts, i.e., {sai }ki=1 and {sbi}ki=1, are such that the
corresponding shifted matrices are nonsingular.

The application of Krylov subspaces to solve the Lyapunov and the Sylvester equation
were presented in 1989 by Saad [118]. In terms of the Kronecker form (Proposition 2.3.2),
a Krylov subspace method could seem like a natural approach to the problem. However, it
is not a Krylov subspace based on the system matrix (I ⊗A) + (B ⊗ I) that is of interest
here. Rather it is a tensorized version Hk ⊗Kk, which is what is presented and motivated
in [118]. For more on tensorized Krylov subspaces, see [82].

The extended Krylov subspaces for the Lyapunov and the Sylvester equation were in-
troduced in [124, 28], where they form the basis of the method called Krylov-plus-inverted
Krylov (K-PIK). The method uses a modified Gram–Schmidt method for the orthogonal-
ization and the projected matrices, i.e., Ak = VTk AVk and Bk = WT

k BWk, are com-
puted from the orthogonalization coefficients, avoiding the need for a direct projection.
Further efficiency is gained from exploiting the structure of the residual, and thus allowing
computations of the residual norm without explicitly forming the residual.
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The Rational Krylov subspace was introduced in 1984 by Ruhe, and used for eigen-
value computation [115]. It has been used in model reduction and for computations of
matrix functions; see, e.g., [5, Chapter 11] and the additional references mentioned in
[125, p. 400]. Although there are close connections with the previous applications, the
first application of rational Krylov subspaces for solving matrix equations seems to be in
paper [39] from 2011 (see [125, p. 409]). As mentioned for the ADI iteration, it is of great
importance to find good shifts. This challenge has been treated recently by Druskin and
co-authors in [37, 38, 39], resulting in an (almost) parameter-free method applicable to the
Lyapunov and the Sylvester equation. The case when the right-hand side is not of low rank
(i.e., r is not small in the notation around (2.6)) is treated in [40] where tangential direc-
tions are used. Rational Krylov subspaces are many times written and even implemented
in a more compact form, as presented in Proposition 2.3.32 below. In order to prove the
proposition we need a lemma, known as the resolvent equation, or sometimes the resolvent
identity.

Lemma 2.3.31 ([83, Equation (15)]). LetA ∈ Rn×n, and let µ, λ ∈ C be such that µI−A
and λI −A are nonsingular. Then

(µ− λ)(λI −A)−1(µI −A)−1 = (λI −A)−1 − (µI −A)−1.

Proof. Consider the identity (µ − λ)I = (µI − A) − (λI − A), and multiply it with
(λI −A)−1 from the left and (µI −A)−1 from the right.

The resolvent equation is a general result and holds true for general (infinite dimen-
sional) linear operators; see, e.g., [76, p. 36]. By inductively applying the resolvent equa-
tion to the definition of the rational Krylov subspace, we reach the following conclusion.

Proposition 2.3.32. Let A ∈ Rn×n, C ∈ Cn×r, and let {si}mi=1 be a set of nonzero
scalars, si ∈ C, such that si 6= sj if i 6= j and siI −A is nonsingular for i = 1, 2, . . . ,m.
Then

span

{
C, . . . ,

m∏
i=1

(siI −A)−1C

}
= span

{
C, (s1I −A)−1C, . . . , (smI −A)−1C

}
.

We emphasize the requirement that the shifts are different (i.e., si 6= sj) for the equality
to hold (the resolvent equation reads 0 = 0 if µ = λ). Hence, for cases of cyclic reuse of
shifts the standard definition has to be used.

For many problems the input quantities are real, and a complex-valued approxima-
tion would be nonsensical. Still, when applying the rational Krylov method with a non-
symmetric matrix it may be desirable to use complex shifts, since the spectrum of the
matrix may contain complex (conjugate) eigenvalues. If the matrices and vectors involved
are real, then it is possible to avoid using a complex valued basis for the rational Krylov
subspace, as long as both the shift and its complex conjugate are used in constructing the
basis.
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Proposition 2.3.33 ([116]). Let A ∈ Rn×n, C ∈ Rn×r, and let s ∈ C be such that sI−A
and s̄I −A are nonsingular, where s̄ is the conjugate of s. Then

span
{

(sI −A)−1C, (s̄I −A)−1C
}

= span
{

Re((sI −A)−1C), Im((sI −A)−1C)
}
.

Proof. The proposition follows directly by the observations

Re((sI −A)−1) =
1

2

(
(sI −A)

−1
+ (s̄I −A)

−1
)

Im((sI −A)−1) =
1

2i

(
(sI −A)

−1 − (s̄I −A)
−1
)
.

Quadrature and time-stepping methods

There is a great number of integral formulations of the solution of the Lyapunov and the
Sylvester equation, e.g., Proposition 2.3.9, Corollary 2.3.11, Corollary 2.3.12, Proposi-
tion 2.3.18, and Corollary 2.3.19 mentioned above. In theory quadrature can be applied to
all of them.

In [118], Saad suggests approximation of the integral in Proposition 2.3.9 and show that
a subspace approximation of the integrand is equivalent to a direct Galerkin approximation
(Proposition 2.3.28). Hence, Saad motivates the use of Krylov subspace methods for the
Lyapunov equation. However, the paper also contains some analysis of approximation of
the matrix exponential and computation using quadrature. For example, it is noted that
there is a relation with an ODE related to the one presented in Proposition 2.3.13. More
precisely, we have that,

Ẏ (t) = AY (t) + Y (t)BT ,

with Y (0) = C1C
T
2 has the solution Y (t) = eAtC1C

T
2 e

BT t, which is exactly the integrand
described in Proposition 2.3.9.

A somewhat related approach is described in [55], where Gudmundsson and Laub note
that for A,B ∈ Rn×n stable, the system

ẋ(t) = BTx(t), x(0) = v, y(t) = CT2 x(t)

has the output y(t) = CT2 e
tBT

v. Thus, the system

ż(t) = Az(t) + C1y(−t), z(−∞) = 0,

has the solution at t = 0 given by z(0) =
∫ 0

−∞ e−tAC1C
T
2 e
−tBT

vdt = Xv. It is sug-
gested to numerically integrate the ODEs with, e.g., a Runge-Kutta or linear multistep
method. Based on the approximative matrix-vector product we can think of applying the
method to a set of orthogonal and normalized initial input vectors {vi}, and orthogonalize
(and normalize) the set of output vectors {zi(0)}. Thus, the procedure can be repeated with
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the new input vectors being the previous (orthogonalized and normalized) output vectors.
The presented procedure effectively becomes an approximative blocked power method for
computing an invariant space corresponding to the dominant eigenvalues. An approxima-
tive power method is also described in [67], albeit based on a different approach. The
difference is that the matrix-vector product is approximated by using a Krylov subspace
and computing the solution to a projected Sylvester equation with one large coefficient and
the other small, in each iteration.

A different type of exploitation of quadrature is found in the paper by Grasedyck [52].
The underlying integral is related to the integral in Proposition 2.3.9, but formulated for
tensorized equations with a (potentially) high number of tensor modes. In the paper a
sophisticated Stenger quadrature is used, and the result can also be used to motivate the
existence of (relatively) low-rank solutions; specifically also applicable to the Sylvester
equation, which is used in the low-rank characterization in Paper B (see Section B.2.2).

In [90] the integral in Proposition 2.3.9 is treated directly with the variable substitution
x = L cot(θ/2)2, where L is a parameter and cot(θ) = 1/ tan(θ). The presented method
exploits quasiseparability of the coefficients, a structure informally described as the off-
diagonal blocks being of low rank.

The generalized Lyapunov and Sylvester equation

Other special cases of the general linear matrix equation (2.3) that has attracted a lot of
attention in recent years are the generalized Lyapunov equation

AX +XAT +
m∑
i=1

NiXN
T
i = CCT , (2.9)

and the generalized Sylvester equation

AX +XBT +
m∑
i=1

NiXM
T
i = C1C

T
2 . (2.10)

In relation to these equations we have found it natural to define the (linear) operators
L (X) := AX +XBT and Π(X) :=

∑m
i=1NiXM

T
i . Similar to the standard equations,

(2.9) and (2.10) show up in many different applications, e.g, as

• (generalized) Gramians for time-invariant bilinear dynamical systems. See [113,
31] for the background regarding control and observability, [3] for the formulation
of the matrix equation, [143] for further treatment and connection with H2-model
reduction, and [17] for a more modern treatment with focus on energy estimates and
model reduction. Gramians are computed in the examples in Paper C.

• discretizations of partial differential equations (PDEs); see [24] for an early treat-
ment. Further examples are, e.g., a convection–diffusion in the thesis [95], the prob-
lem treated in Paper A, and Example B.4.3 in Paper B. Recent research regards
techniques for more complex domains [58].
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A common assumption in the literature is that ρ(L −1 Π) < 1, where ρ denotes the spec-
tral radius. The assumption is reasonable in the sense that (2.3) can, as pointed out above,
parametrize any linear operator. Hence, in order to say something specific the operator Π
must have special structure and/or be bounded in relation to L . If ρ(L −1 Π) < 1, then
writing the right-hand side operator in (2.10) as L +Π constitutes a convergent splitting.
Methods relying on fixed-point iteration and Neumann series (equivalent in exact arith-
metic [130]) have been developed using this splitting. The basic idea has strong similarities
to Jacobi and Gauss–Seidel iterations, see, e.g., [51, Section 11.2] and [119, Section 4.1].
For methods exploiting fixed-point iteration and Neumann series see, e.g., [32, 16, 122, 90]
as well as Papers B and C. However, we stress that there are many interesting applications
where this condition on the spectral radius is not satisfied, e.g., indefinite solution matri-
ces related to bilinear Gramians, as mentioned in [16]; the general linear matrix equations
stemming from discretizations of PDEs in [104]; and the problem treated in Paper A.

Computational methods for the generalized Lyapunov and Sylvester equation is still an
active research topic, and so far, and to the best of our knowledge, with no clear method
of choice. Moreover, there is no sharp border between the generalized Lyapunov and
Sylvester equation, and general linear matrix equations. Recent contributions include: ex-
ploiting the fixed-point iterations, as mentioned above ([32, 16, 122, 90]); preconditioned
Krylov subspaces [32], and general methods for linear systems with tensor product struc-
ture [80, 81]; specific equations with low-rank corrections, .i.e., Π having low-rank coef-
ficients, [32, 16, 90]; a bilinear version of ADI (BilADI) [16]; greedy low-rank method
based on the alternating linear scheme (ALS) [80]; rational Krylov-type methods [104];
and from the connection with bilinear control systems there is the bilinear iterative rational
Krylov (BIRKA) method [15, 47].

Remark 2.3.34 (The term generalized Sylvester equation). We call (2.10) the general-
ized Sylvester equation, as is also done in some parts of the literature [16, 17, 32, 122].
However, in other parts of the literature the term is used for other equations such as, e.g.,

AX + Y B = EXF,

in [141, 144], where both X and Y are unknown; as well as for the pair of equations

A1X − Y A2 = B1 and A3X − Y A4 = B2,

in [51, Notes and references for Section 7.7]. The term generalized is also used to denote
equation (2.7), i.e.,

A1XB
T
1 +A2XB

T
2 = C1C

T
2 ,

that we call the two-sided Sylvester equation; see [125, Section 7] as well as [80], and
analogously for the Lyapunov equation in [136]. However, in [80] equation (2.9) is termed
generalized Lyapunov equation.
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2.4 Nonlinear eigenvalue problems

The nonlinear eigenvalue problem (NEP) can informally be understood as having M(λ) ∈
Cn×n, a matrix depending on a parameter λ, with the goal to find a value for λ and cor-
responding vector x such that M(λ) is singular and x is in the kernel. More formally we
define it as: Let Ω be a subset of the complex numbers, i.e., Ω ⊂ C. Given a function M
mapping scalars to matrices, i.e., M : Ω→ Cn×n, find a pair (λ0, x0) ∈ Ω×Cn, x0 6= 0,
such that

M(λ0)x0 = 0. (2.11)

The more formal function-viewpoint is advantageous since is allows us to define what
type of functions we are studying, e.g., in many cases it is assumed that M is an analytic
function on Ω, albeit not entire. The NEP has been extensively studied over more than
half a century; see, e.g., [114, 91, 137, 57] for overviews of the field; this exposition is in
part based on those. The large number of algorithms and techniques developed for NEP
have in recent years been incorporated in specialized software, e.g., the SLEPc library
[110, 61, 62], and NEP-PACK as described in Section 3.5.

Special cases of the nonlinear eigenvalue problem (2.11) are, e.g.:

• The linear eigenvalue problem, M(λ) := A− λI .

• The generalized eigenvalue problem, M(λ) := A− λB.

• The quadratic eigenvalue problem, M(λ) := A0 +A1λ+A2λ
2.

• The polynomial eigenvalue problem, M(λ) :=
∑m
i=0Aiλ

i.

• The rational eigenvalue problem, M(λ) :=
∑m1

i=0Aiλ
i +

∑m2

i=0Biri(λ), where ri
are given rational functions.

• The delay eigenvalue problem, M(λ) := λI − A0 −
∑m
i=1Aie

−τiλ, where the
scalars τ1, τ2, . . . , τm are given (delays).

From the first and second special cases listed above it is clear how the nonlinear eigenvalue
problem generalizes the linear eigenvalue problem. Hence, the following definition of an
eigenpair generalizes Definition 2.1.1, and thus some of the definitions and propositions
below generalizes some results and definitions from the linear eigenvalue problem. To
avoid degenerate cases we often (although sometimes implicitly) work with regular NEPs,
a concept analogous to regular pencils (Definition 2.1.18); see, e.g., [137].

Definition 2.4.1 (Regular and singular). A nonlinear eigenvalue problem (2.11) is called
regular if there exists λ ∈ Ω such that det(M(λ)) 6= 0. A NEP that is not regular is called
singular.

Definition 2.4.2 (Eigenpair). For a regular NEP, a pair (λ0, x0) ∈ Ω × Cn, x0 6= 0, such
that (2.11) is satisfied is called an eigenpair. The scalar λ0 is called an eigenvalue, and the
vector x0 is called (a corresponding) eigenvector. To be more precise, the vector x0 is a
right eigenvector; a left eigenvector should satisfy vH0 M(λ0) = 0, and v0 6= 0.
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It follows immediately that an equivalent definition of an eigenvalue is a value λ ∈ Ω
such that g(λ) := det(M(λ)) = 0. However, note that for the NEP the determinant is
not necessarily a polynomial in λ, in general it is not. Nevertheless, if M : Ω → Cn×n is
analytic in Ω, then so is g : Ω→ C. We illustrate a couple of properties of NEPs with the
following example. Let a ∈ C be a fixed parameter, and consider the NEP

M(λ) :=

[
1 0
0 a

]
+

[
eiλ 0
0 0

]
. (2.12)

For a 6= 0 the NEP is regular. We can see that the eigenvalues are given by solutions to
the equation 1 + eiλ = 0. Three observations follow. First, NEPs are a generalization of
scalar root-finding problems [57], as can also be seen from det(M(λ)) = 0. Second, a
NEP can have any number of eigenvalues, from zero to infinity. For the given example the
eigenvalues are λ0 = π + 2πk for k = . . . ,−2 − 1, 0, 1, 2, . . . . Third, eigenvectors of
distinct eigenvalues need not be linearly independent [57]. For the given example

[
1 0

]T
is a corresponding eigenvector to all eigenvalues. However, for a = 0 the NEP is singular,
since

[
0 1

]T
is in the kernel of M(λ) regardless of the value of λ. Another example of a

singular NEP is the 1× 1 root-finding problem M(λ) :=
[
1− |eiλ|

]
= 0. We see that the

eigenvalues of the latter example are all λ0 ∈ R. Hence, the eigenvalues form a continuum.
However, for a regular and analytic NEP, the eigenvalues are isolated [57, Theorem 2.1].
A third example illustrating properties of the NEP is

M(λ) :=

[
λk 0
0 0

]
+

[
0 0
0 1

λ−a

]
. (2.13)

We directly observe that g(λ) := det(M(λ)) = λk/(λ − a). The NEP, here a rational
eigenvalue problem, has no (finite) eigenvalue if a = 0. It is easy to see if k = 1 since
g(λ) = 1 6= 0. However, even for k > 1 it holds that λ = 0 is not an eigenvalue, since
it is a pole. Example (2.13) does not contradict what what said above about g(λ) = 0
characterizing the eigenvalues, since 0 /∈ Ω for a = 0. Although, if a 6= 0, then λ0 = 0 is
an eigenvalue.

A general class to which many NEPs belong, e.g., all the NEPs mentioned above, are
the sum of products of matrices and functions (SPMF). A NEP written in the SPMF format
can be expressed as

M(λ) :=
m∑
i=0

Aifi(λ), (2.14)

where fi are scalar valued functions, i.e., fi : Ω → C, for i = 1, 2, . . . ,m. In particular,
all analytical NEPs can be written in the SPMF format, with m ≤ n2; see, e.g., [21,
57]. However, from a computational perspective it might not be desirable; see, e.g., the
problems treated in [43] and [75]. With respect to example (2.12) we note that it can be
written with f1(λ) = 1 and f2(λ) = eiλ, and remark that singularity in the case of a = 0
stems from a common kernel of A1 and A2. For a NEP written in the SPMF format a
common kernel of A1, A2, . . . , Am is in general a sufficient, but not a necessary, condition
for singularity; thus analogous to the case for the generalized eigenvalue problem.
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Definition 2.4.3 (Multiplicity of a root). Let f : Ω → C be an analytic function for some
Ω ⊂ C. The root finding problem associated with f is to find z ∈ C such that f(z) = 0. A
root z0 ∈ C is a value such that f(z0) = 0. The multiplicity of the root z0 is the smallest
integer k such that f (k)(z0) 6= 0.

Definition 2.4.4 (Algebraic and geometric multiplicity). Let the NEP (2.11) be regular
and analytic, and let λ0 ∈ Ω be an eigenvalue. The algebraic multiplicity of the eigen-
value is defined as the multiplicity of the root λ0 to the function g(λ) := det(M(λ)),
i.e., the smallest integer k such that g(k) 6= 0. Moreover, the geometric multiplicity of the
eigenvalue is defined as dim(ker(M(λ0))), i.e., the dimension of the kernel of M(λ0).

The classical 1 × 1 example M(λ) =
[
λk
]

has eigenvalue λ0 = 0 with algebraic
multiplicity k, and it shows that, in contrast to the linear eigenvalue problem, for a NEP
the algebraic multiplicity is not bounded by the size of the problem; see, e.g., [137, 57].
However, if the NEP is regular and analytic, then the algebraic multiplicity is finite, since
the converse would imply that det(M(λ)) = 0 identically for all λ ∈ Ω.10

The concept of a generalized eigenvector is defined from a Jordan chain.

Definition 2.4.5 (Jordan chain). Let the NEP (2.11) be regular and analytic. Moreover,
let (λ0, x0) ∈ Ω × Cn be an eigenpair. A tuple of vectors (x0, x1, . . . , xr−1) is called a
Jordan chain if

∑̀
k=0

1

k!
M (k)(λ0)x`−k = 0 for ` = 0, 1, . . . , r − 1.

The vectors x1, . . . , xr−1 are known as the generalized eigenvectors, r is known as the
length of the Jordan chain, the maximal length of a Jordan chain starting with x0 is known
as the rank of x0.

We exemplify by writing out the general defining equations of Jordan chains of length
1, 2, and 3. If (x0), (y0, y1) and (z0, z1, z2) are Jordan chains, then it holds that

M(λ0)x0 = 0

M(λ0)y0 = 0 M(λ0)y1 = −M ′(λ0)y0 (2.15)

M(λ0)z0 = 0 M(λ0)z1 = −M ′(λ0)z0 M(λ0)z2 = −1

2
M ′′(λ0)z0 −M ′(λ0)z1.

We see directly that x0, y0, and z0 are eigenvectors corresponding to the eigenvalue λ0.
In the above example it is possible to take x0 = y0, as well as y0 = z0 and y1 = z1,
motivating the notion of the rank of x0. However, it is also possible that x0 6= y0, and
x0 6= z0, although it requires that the geometric multiplicity of the eigenvalue λ0 is larger
than one.

10Consider, e.g., a Taylor series expansion around the eigenvalue with infinite multiplicity.
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Remark 2.4.6 (Jordan chains for the linear eigenvalue problem). The definition general-
izes the notion of Jordan chains for linear eigenvalue problems since if M(λ) = A − λI ,
then M ′(λ) = −I , and M (k)(λ) = 0 for k ≥ 2. The result is the classical set of equations

(A− λ0I)x0 = 0 (A− λ0I)x1 = x0 . . . (A− λ0I)xr−1 = xr−2.

We observe that the equations can be written together in blocked form as,

A
[
x0 x1 x2 . . . xr−1

]
=
[
x0 x1 x2 . . . xr−1

]
Jr−1(λ0).

The observation forms a basis for proving Proposition 2.1.15 about the existence of a Jor-
dan form; namely, the matrix S in the proposition consists of the generalized eigenvectors.

The definition of a Jordan chain given above is along the lines of [50, Equation (1.28)],
[41, Definition 3.1.10], and [137]. However, there is an equivalent way to present a Jor-
dan chain found in, e.g.,[57, Definition 2.3] and [21]. We present the latter in form of a
proposition, with an explicit proof, stating the alternative definition as an equivalent char-
acterization.

Proposition 2.4.7. Let the NEP (2.11) be regular and analytic, and let (λ0, x0) ∈ Ω×Cn
be an eigenpair. Consider the tuple of vectors (x0, x1, . . . , xr−1). Moreover, define the
vector valued functions χ` : Ω→ Cn as

χ`(λ) :=
∑̀
k=0

xk(λ− λ0)k, (2.16)

for ` = 0, 1, . . . , r − 1. The tuple (x0, x1, . . . , xr−1) is a Jordan chain if and only if the
function M(λ)χ`(λ) has a root λ0, i.e., M(λ0)χ`(λ0) = 0, and the root is of multiplicity
at least `, for ` = 0, 1, . . . , r − 1.

Proof. We begin by stating some relations that we will use to prove the statement. First
note that χ`(λ0) = x0, and hence M(λ0)χ`(λ0) = 0. More generally we observe that the
mth derivative is

χ
(m)
` (λ) =

∑̀
k=m

k!

(k −m)!
xk(λ− λ0)k−m.

Specifically, at the eigenvalue χ(m)
` (λ0) = m!xm if m ≤ ` and 0 otherwise. By using

these properties we can, for a generic ` in 0 ≤ ` ≤ r−1, establish the following equalities:

M(λ0)χ`(λ0) = M(λ0)x0

d

dλ

∣∣∣
λ=λ0

(M(λ)χ`(λ)) = M ′(λ0)χ`(λ0) +M(λ0)χ′`(λ0) = M ′(λ0)x0 +M(λ0)x1
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2.4. Nonlinear eigenvalue problems

d2

dλ2

∣∣∣
λ=λ0

(M(λ)χ`(λ)) = M ′′(λ0)χ`(λ0) +

(
2

1

)
M ′(λ0)χ′`(λ0) +M(λ0)χ′′` (λ0)

= 2

(
1

2
M ′′(λ0)x0 +M ′(λ0)x1 +M(λ0)x2

)
...

d`

dλ`

∣∣∣
λ=λ0

(M(λ)χ`(λ)) =
∑̀
k=0

(
`

k

)
M (k)(λ0)χ

(`−k)
` (λ0)

=
∑̀
k=0

`!

k!(`− k)!
M (k)(λ0)(`− k)!x`−k = `!

(∑̀
k=0

1

k!
M (k)(λ0)x`−k

)
.

The conclusion now follows easily. First, assume that we have a Jordan chain. Then
the right-most expressions of all the equalities above are all equal to zero, which proves
that M(λ)χ`(λ) has a root λ0 of multiplicity at least `, for all ` = 0, 1, . . . , r − 1.

Second, assume that M(λ)χ`(λ) has a root λ0 of multiplicity at least `, for ` =
0, 1, . . . , r − 1. Then the left-most expressions of all the equalities above are all equal
to zero, which proves that the tuple (x0, x1, . . . , xr−1) is a Jordan chain of length r.

In general a vector valued function χ(λ) such thatM(λ0)χ(λ0) = 0 for is called a root
function of M at λ0. The functions χ`(λ) defined in (2.16) are root functions correspond-
ing to the Jordan chains (x0), (x0, x1),. . . ,(x0, x1, . . . , xr−1). With these notions the rank
of an eigenvector can get an equivalent characterization.

Definition 2.4.8. Let the NEP (2.11) be regular and analytic, and let (λ0, x0) ∈ Ω×Cn be
an eigenpair. The rank of x0 is the maximum of all multiplicities of root functions χ(λ),
such that χ(λ0) = x0.

There may be multiple Jordan chains for an eigenvalue λ0, corresponding to each de-
gree of the geometric multiplicity. However, with the proper definitions it is possible to
establish a complete (canonical) system, which is known to always exist [57].

Definition 2.4.9. Let the NEP (2.11) be analytic, and let λ0 ∈ Ω be an eigenvalue. More-
over, let d be the geometric multiplicity, i.e., d = dim(ker(M(λ0))).

Consider d eigenvectors x1
0, x

2
0, . . . , x

d
0 such that they form a basis of the kernel, i.e.,

span
{
x1

0, x
2
0, . . . , x

d
0

}
= ker(M(λ0)). Specifically, let x1

0 be such that the rank is maxi-
mal, and for j = 2, 3, . . . , d let xj0 be the vector with maximal rank in the complement of
the previously defined vectors, i.e.,

xj0 = arg maxx
{

rank(x) : x ∈ ker(M(λ0)\ span{vk0 : 1 ≤ k ≤ j − 1}
}
.

Denote the rank of xj0 with mj and define the corresponding d Jordan chains, i.e., let
(xj0, x

j
1, . . . , x

j
mj−1) be Jordan chains for j = 1, 2, . . . , d.

Then the tuples (xj0, x
j
1, . . . , x

j
mj−1) for j = 1, 2, . . . , d are called a complete system

of Jordan chains for M at λ0.
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It is also known as a canonical set of Jordan chains, and we emphasize that they are
known to always exist. The numbers mj referenced in Definition 2.4.9 are known as the
partial multiplicities and are uniquely defined [137]. It is easily seen that these are ordered
and at least equal to one, i.e., m1 ≥ m2 ≥ · · · ≥ md ≥ 1. Moreover, the sum of the partial
multiplicities is equal to the algebraic multiplicity [137, 57], i.e.,

∑d
j=1mj = α, where

α is the algebraic multiplicity of λ0. Hence, the geometric multiplicity is always smaller
than or equal to the algebraic multiplicity; as we are used to from the linear eigenvalue
problem. We get a corresponding characterization of eigenvalues.

Definition 2.4.10 (Simple eigenvalue). An eigenvalue to the NEP (2.11) is called simple
if the algebraic multiplicity equals to 1. Furthermore, an eigenvalue is called semisim-
ple if the algebraic multiplicity is strictly larger than 1, and the algebraic and geometric
multiplicities are equal.

With reference to the complete system of Jordan chains we have that a simple eigen-
value means that d = 1 and m1 = 1, and a semisimple eigenvalue means that d > 1 and
m1 = m2 = · · · = md = 1, which is analogous to the linear case. An important difference
between the linear and nonlinear eigenvalue problem is that the generalized eigenvectors
need not be linearly independent in the latter case. Even 0 is allowed as a generalized
eigenvector, albeit not as an eigenvector. However, for simple and semisimple eigenvalues
the following can be said about the eigenvectors.

Proposition 2.4.11 ([57, Theorem 2.5], [137]). Let the NEP (2.11) be regular and analytic.
Moreover, let λ0 ∈ Ω be an eigenvalue, and v, x ∈ Cn be corresponding left and right
eigenvectors. Then λ0 is algebraically simple if and only if λ0 is geometrically simple and
vHM ′(λ0)x 6= 0.

Furthermore, assume that λ0 is semisimple with algebraic multiplicity d. Then the
left and right eigenvectors vi, xi ∈ Rn for i = 1, 2, . . . , d, can be chosen M ′(λ0)-
biorthogonal, i.e., vHi M

′(λ0)xj = 0 if i 6= j and vHi M
′(λ0)xi 6= 0.

If we think of (λ, x) as an approximation of an eigenpair to an analytic NEP (2.11), we
define the residual as r := M(λ)x, where r ∈ Cn and in general r 6= 0. As described in
[41, 42], the NEP can be described using Cauchy’s integral formula (2.2). Hence, under
suitable assumptions, the residual can be expressed as

r(x, λ) = M(λ)x =
1

2πi

∮
Γ

M(z)x(z − λ)−1dz,

where we have written out the explicit dependence of r on x and λ. The latter can be
naturally extended to a block version; see also, [21].

Definition 2.4.12 (Block residual). Let the NEP (2.11) be regular and analytic. Moreover,
let X ∈ Cn×m and Λ ∈ Cm×m be such such that the eigenvalues of Λ are contained in Ω.
We define the block residual as

M(X,Λ) :=
1

2πi

∮
Γ

M(z)X(zI − Λ)−1dz, (2.17)
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where Γ is a simple, piecewise-smooth, and closed contour strictly enclosing the eigenval-
ues of Λ.

Proposition 2.4.13 ([21, Proposition 2.6]). Let the NEP (2.11) be regular and analytic,
and consider M written in the SPMF format (2.14). Moreover, let X , Λ and M(X,Λ) be
as in Definition 2.4.12. Then

M(X,Λ) =
m∑
i=0

AiXfi(Λ),

where fi(Λ) is interpreted in the matrix function sense of Section 2.2.

Proof. Direct computation and the usage of Definition 2.2.2 gives

M(X,Λ) =
1

2πi

∮
Γ

M(z)X(zI − Λ)−1dz =
1

2πi

∮
Γ

(
m∑
i=0

Aifi(z)X(zI − Λ)−1

)
dz

=
m∑
i=0

AiX

(
1

2πi

∮
Γ

fi(z)(zI − Λ)−1dz

)
=

m∑
i=0

AiXfi(Λ).

Definition 2.4.14 (Invariant pair). Let the NEP (2.11) be regular and analytic. Moreover,
let X , Λ and M(X,Λ) be as in Definition 2.4.12. The pair (X,Λ) is called an invariant
pair if M(X,Λ) = 0.

Proposition 2.4.15. Let the NEP (2.11) be regular and analytic, and let (X,Λ) be an
invariant pair. Moreover, let y be an eigenvector to Λ with eigenvalue λ0, i.e. Λy = λ0y.
If Xy 6= 0, then (λ0, Xy) is an eigenpair to M .

Proof. It follows from that (Λ, X) is an invariant pair, that M can be written in the SPMF
format, and that M is analytic and thus the functions in the SPMF format has power-series
expansions, i.e.,

0 = M(X,Λ)y =
m∑
i=0

AiXfi(Λ)y =
m∑
i=0

AiX

 ∞∑
j=0

cijΛ
j

 y

=
m∑
i=0

AiXy

 ∞∑
j=0

cijλ
j
0

 =
m∑
i=0

Aifi(λ0)Xy = M(λ0)(Xy).

We see that the notion of invariant pair in some sense extends the notion of eigenpairs,
and more generally of invariant subspaces. However, the definition is a bit too broad to be
useful, e.g., if (X,Λ) is an invariant pair then

([
X X

]
,diag(Λ,Λ)

)
is an invariant pair;
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and X = 0 gives a (trivial) invariant pair. The former example is redundant, and the latter
not useful, since, e.g., Proposition 2.4.15 is not applicable. A remedy is to require that the
(invariant) pair is minimal [79, 137, 57], as in the following definition.

Definition 2.4.16 (Minimal pair). A pair (X,Λ) ∈ Cn×m × Cm×m is called a minimal if
the rank of Vk(X,Λ) = m, where

Vk(X,Λ) :=


X
XΛ

...
XΛk−1

 .
The smallest such k is called the minimality index of the pair.

The result is related to controllable pairs (page 23) [41, Proposition 3.1.4]. We note
that in the generic case the minimality index of a pair is 1 when m ≤ n, since m vectors
of length n are, in the generic case, linearly independent. However, in the context of an
invariant pair for NEPs there are situations where m > n, since we have seen that there
is no upper bound on the number of eigenvalues. In such situation, given that the pair is
minimal, the minimality index is for sure greater than 1.

Proposition 2.4.17 ([79, Lemma 4], [57, Lemma 2.14]). Let the NEP (2.11) be regular
and analytic, and let (X,Λ) be an invariant pair. If (X,Λ) is a minimal invariant pair,
then the eigenvalues of Λ are eigenvalues of the NEP.

As we see, minimality removes the degenerate cases. However, a minimal invariant
pair does not necessarily describe the complete eigenstructure in terms of multiplicities.
To distinguish such a case, there is the definition of a simple invariant pair, introduced in
[79, Section 2.2], see also [137] (called complete invariant pair in [57, Definition 2.16]).

Definition 2.4.18 (Simple invariant pair). An invariant pair, (X,Λ) ∈ Cn×m ×Cm×m, is
called simple if it is minimal, and the algebraic multiplicities of the eigenvalues of Λ are
identical to the algebraic multiplicities of the corresponding eigenvalues of the NEP (2.11).

It is observed that the entries of a simple invariant pair vary analytically under an-
alytic perturbations of the NEP M [79, p. 362]. The observation is interesting from a
perturbation-analysis perspective, and shows that the entity described in the definition
(simple invariant pair) is well-posed and hence reasonable to compute. There is also a close
connection between minimal invariant pairs and Jordan chains. The intuition is nicely de-
scribed in [21] by considering the example with a Jordan chain of length 2 of a NEP written
in the SPMF format (2.14). A chain of length 2 was explicit written out in (2.15) above,
and when the NEP is in the SPMF format it becomes

m∑
i=0

Aifi(λ0)x0 = 0

m∑
i=0

Aifi(λ0)x1 +
m∑
i=0

Aif
′
i(λ0)x0 = 0.
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From the definition of a matrix function applied to a Jordan block (Definition 2.2.3), we
have that the above equations are equivalent to

m∑
i=0

Ai
[
x0 x1

]
fi(J2(λ0)) = 0.

Hence, from Proposition 2.4.13 we have that (
[
x0 x1

]
, J2(λ0)) is an invariant pair.

Proposition 2.4.19 ([21, Proposition 2.4], [41, Proposition 3.1.12]). Let the NEP (2.11)
be regular and analytic. Let λ0 ∈ Ω be an eigenvalue and the vectors xj0 be eigenvectors
for j = 1, 2, . . . , d. Moreover, consider the tuples of vectors (xj0, x

j
1, . . . , x

j
mj−1) for

j = 1, 2, . . . , d. Every such tuple is a Jordan chain at λ0 if and only if (X, J) is an
invariant pair, where

X :=
[
x1

0 x1
1 . . . x1

m1−1 x2
0 x2

1 . . . x2
m2−1 . . . xd0 xd1 . . . xdmd−1

]
J :=


Jm1

(λ0) 0 . . . 0
0 Jm2(λ0) . . . 0
...

...
. . .

...
0 0 . . . Jmd

(λ0)

 ,
and X ∈ Cn×(m1+m2+...md) and J ∈ C(m1+m2+...md)×(m1+m2+...md). Moreover, the
pair (X,J) is minimal if and only if the eigenvectors {xj0}dj=1 are linearly independent.

The result can also be extended to cover distinct eigenvalues, see [41, Theorem 3.1.13].
A simple invariant pair is minimal and characterizes the algebraic multiplicities of

these eigenvalues (the statement is unambiguous due to Proposition 2.4.17). Hence, the
following can be concluded.

Corollary 2.4.20 ([21]). A simple invariant pair (X,Λ) describes the complete system of
Jordan chains for every eigenvalue in Λ.

Remark 2.4.21 (“The” nonlinear eigenvalue problem). The problem considered in (2.11)
is a problem with an eigenvalue nonlinearity. However, it should be noted that there
are other generalizations of eigenvalue problems, e.g., with eigenvector nonlinearities
M(x)x = λx, where M : Ω → Cn×n with Ω ⊂ Cn. See, e.g., [74, 135]. Neverthe-
less, we focus on problems of the type (2.11) and other types of problems are generally not
treated in this thesis.
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Chapter: 3

Contribution

W e summarize the work and highlight the author’s contribution. The first four sec-
tions cover the appended papers. The subsections titled ”Outlook and extensions“

outline some additional discussions connected with respective paper and require the reader
to be more familiar with the concerned paper. Hence, it may be advisable to read the
corresponding paper first. Some of the included material is briefly mentioned in the pub-
lications; some of it was, for reasons of space, excluded in the corresponding publication;
and some have come from the author’s additional thoughts during the work with this thesis.

The two last sections of the chapter cover other work which has been part of the doc-
toral studies: One software package and one textbook.

3.1 Regarding paper A: Sylvester-based preconditioning for the
waveguide eigenvalue problem

The paper is co-authored with Giampaolo Mele, Johan Karlsson, and Elias Jarlebring. It is
published in Linear Algebra and its Applications, volume 542, pages 441–463, April 2018.

Contribution: The work was initiated by E. Jarlebring, and builds on the previous
work of E. Jarlebring and G. Mele [75]. The ideas were developed in close collaboration
with the co-authors, and I participated in the development of the proofs and proof tech-
niques that led up to the theorems. I did, or took part in, most of the implementation, and I
was carrying out the main part of the simulations. The writing was mostly done by me and
E. Jarlebring. The work is also included in the thesis of G. Mele [92].

Paper A concerns a special nonlinear eigenvalue problem characterizing a waveguide,
which was previously studied in [75]. It had been identified that many methods for solving
the NEP required the solution of multiple large linear systems, which constituted a bottle-
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neck in terms of hardware. The method of choice in Paper A is residual inverse iteration
[94], where a linear system with the same system matrix needs to be solved in each step of
the algorithm. However, a pre-factorization was too expensive in terms of memory. There-
fore, the method is instead to identify the linear system as equivalent to a matrix equation
(Proposition A.3.1), and to use implicit vectorization and iterative methods to solve the lin-
ear system. The fact that it is the same system matrix in each iteration of the NEP method
makes it possible to develop a powerful preconditioner. Although Paper A specifically con-
cerns the method residual inverse iteration applied to the waveguide eigenvalue problem,
the solution method can be adopted to other NEPs and solution algorithms.

For development and applications of the Sherman–Morrison–Woodbury (SMW) for-
mula in the context of matrix equations, see [32, 108, 16, 90]. In the case of nonlinear
matrix equations, one could consider adapting nonlinear generalizations of the SMW for-
mula, presented in, e.g., [2].

Outlook and extensions

On the generalized Sylvester equation

We call the matrix equation studied in Paper A for a generalized Sylvester equation. Hence,
the waveguide matrix equation (A.23) should be equivalent to an equation of the form
(2.10). The equivalence is established by the following result.

Proposition 3.1.1 ([68, p. 104]). Assume that K = uvH , with u, v ∈ Cn and X ∈ Cn×n.
Then

K ◦X = diag(u)X diag(v)H ,

where diag(u) and diag(v) are diagonal matrices in Cn×n with the elements of u and v
on their respective diagonals.

Proof. The proof is by direct calculation and follows by looking element-wise, i.e., [K ◦
X]i,j =

[
uvH ◦X

]
i,j

= uiv̄jXi,j = ui [X diag(v̄)]i,j = [diag(u)X diag(v̄)]i,j .

It follows that by, e.g., a singular value decomposition of the discretization of the
wavenumber, K, the matrix equation (A.23) can be equivalently written in the form (2.10),
albeit possibly with a long sum. However, if the wavenumber κ2(x, z) in (A.1a) is separa-
ble in the sense that

κ2(x, z) =
m∑
i=1

fi(x)gi(z),

for some small number m, then [ui]` = gi(z`) for ` = 1, 2, . . . , nz and [v̄i]k = fi(xk)
for k = 1, 2, . . . , nx. In the special case that κ2(x, z) = f(x) + g(z), then K ◦ X =
diag(u)X+X diag(v)H and the term stemming from the wavenumber can be incorporated
directly into the Sylvester operator. Hence, it could be interesting to look at preconditioners
based on the approximation

∫ 1

0
κ2(x, z)dz + 1

x+−x−

∫ x+

x−
κ2(x, z)dx. However, tests with

this preconditioning technique did not show satisfactory convergence for more than very
simple geometries of the waveguide.
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A linear systems view of the preconditioner

We present the ideas of the preconditioner in a way that is in some sense closer to how
preconditioners are typically presented. With reference to Section A.2.2 and with a slight
abuse of notation we can write the system matrix, (A.8), as

M(γ) :=

[
Q̄(γ) + K̄ C1

CT2 P (γ)

]
. (3.1)

Loosely speaking Q̄(γ) represents the discretized derivatives on the interior and the con-
stant part of the wavenumber, and K̄ represents the (varying part of the) wavenumber,
and C1, CT2 , and P (γ) implements the boundary conditions.1 Thus, the linear system of
equations is

Q̄(γ)qint + K̄qint + C1qext = rint

CT2 qint + P (γ)qext = rext.

The interpretation is that qint = vec(X), where X is the discretized solution on the interior
of the domain and qext similarly for the two boundary strips at x = x− and x = x+.2 The
system is solved using a Schur-complement approach and the computational challenge is
to solve

Q̄(γ)qint +
(
K̄ − C1P (γ)−1CT2

)
qint = rint − C1P (γ)−1rext,

for qint. The inversion of Q̄(γ) corresponds to solving a Sylvester equation, and the action
of P (γ)−1 can be computed efficiently with an FFT. The preconditioner introduced in
Paper A can be understood as considering the following linear system

Q̄(γ)qint +
(
K̄ − C1P (γ)−1CT2

)
P̂ qint = rint − C1P (γ)−1rext,

for some matrix P̂ . The matrix P̂ can be found by considering an (approximation) operator
Π introduced in the paper in equation (A.26), i.e.,

Π(X) :=
N∑
k=1

W k(X)Ek,

with Ek being matrices and W k being linear functionals. It follows that

P̂ qint := vec(Π(X)) =
N∑
k=1

vec(Ek) vec(Wk)T vec(X) =
N∑
k=1

P̂kqint,

where we have used that W k are a linear functionals (as in the proof of Theorem A.4.1),
and defined the rank-1 matrices P̂k := vec(Ek) vec(Wk)T . We get P̂ =

∑N
k=1 P̂k. The

(relatively) small rank of P̂ and the ease of inverting Q̄(γ) makes a Sherman–Morrison–
Woodbury inversion technique suitable.

1More precisely, C1, CT2 , and P (γ) are defined in (A.10), (A.11), and (A.12), respectively. Moreover, we
define K̄ := diag(vec(K) − k̄), and Q̄(γ) := Q(γ) − K̄; see the definition of K just above (A.10) and
compare with the discussion just above Proposition A.3.1.

2Compare with the formulation and notation in Propositions A.2.2 and A.3.1
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Figure 3.1: GMRES convergence for solving S(σ)x = c for different coarse grids. Left
plot: grid with 4 refined regions close to the boundary (nx = nz + 8 and Nx = Nz + 8).
Middle plot: grid with 2 refined regions close to the boundary (nx = nz + 4 and Nx =
Nz + 4). Right plot: uniform grid with no boundary refinement (nx = nz and Nx = Nz).

Further refinement of the boundary

In Figure 3.1 the left plot shows the convergence for the experiments with the additionally
refined grid around the boundary, as briefly reported in Section A.6. The middle and right
plots of Figure 3.1 are identical to Figure A.3. From this comparison it can be seen that the
further grid refinement close to the boundary does not seem to improve the convergence
speed, which gives numerical evidence to the explanation regarding the grid refinement
presented around equation (A.37).

Rank of an eigenvector

One idea relevant to the work of Paper A regards if eigenvectors can be represented as
matrices of (numerically) low rank. In such case the Krylov subspace iterations could
be adapted to make use of the low-rank structure. A numerical investigation of the rank
is presented in Figure 3.2. More precisely, the figure shows the singular values of the
matricization of the computed eigenvector approximation, i.e., mat(v), visualized in Fig-
ure A.7b. As can be observed there is a sharp decay in the singular values. However, the
rank was deemed not small enough and further attempts to optimize the Krylov subspace
iterations were not made.

3.2 Regarding paper B: Krylov methods for low-rank commuting
generalized Sylvester equations

Paper B is co-authored with Elias Jarlebring, Giampaolo Mele, and Davide Palitta. The
paper is published in Numerical Linear Algebra with Applications, volume 25, issue 6,
pages e2176, December 2018.
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Figure 3.2: Singular values of the eigenvector visualized in Figure A.7(b), where the prob-
lem is of size nz = 4095 times nx = 4099.

Contribution: The ideas were developed in close collaboration with the co-authors. I
participated in developing proofs that transformed intuition into theorems, and took part in
some of the implementation. Most of the final editing was done by G. Mele. The results
are also addressed in the theses of D. Palitta [95], and G. Mele [92].

Paper B is about method development and problem characterization. It concerns the
generalized Sylvester equation (2.10), i.e.,

AX +XBT +
m∑
i=1

NiXM
T
i = C1C

T
2 ,

under the aforementioned assumption on the spectral radius, i.e., ρ(L −1 Π) < 1. More-
over, for the method development an additional assumption is used, regarding low-rank
commutation of the coefficients. We argue that the main contributions of the paper are
twofold: The paper motivates when generalized Sylvester equations can be expected to
have low-rank solutions, in a way that complements the result in [16]. Furthermore, in
the case of low-rank commutation the paper provides a method for computing low-rank
approximations of the solution. The term low-rank commutation is introduced in the paper
and can be understood as “almost commuting”, although the latter typically has a different
meaning; see, e.g., [99]. It is well-know among practitioners that computing approxi-
mations to generalized Sylvester equations defined by commuting matrices is in general
easier. This can be understood by considering the factorization methods discussed for
Sylvester equations in Section 2.3 and noting that commuting matrices are simultaneously
triangularizable, i.e., the matrices are unitary similar to upper triangular matrices with the
same similarity transform (as in Propositon 2.1.16). Pure commutation comes naturally
as a special case of the low-rank commutation introduced in Paper B, and for this special
case the result reduces to what is already known, i.e., for commuting matrices the standard
extended Krylov subspace provides a suitable approximation basis.
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In the context of the literature on matrix equations, the fixed-point iteration has been
treated in works as [32, 16, 122, 90], and Neumann series has been treated in, e.g., [15].
Moreover, [143, Equations (12)–(13)] treats both the Neumann series and the fixed-point
iteration, and infinite series for general linear matrix equations considered as early as in
the beginning of the 20th century [89].

The suggested search space has analogies to the multimoment-matching spaces from
[27], although with extra structure exploitation in terms of the low-rank commutation.

Outlook and extensions

A different version of the low-rank approximability theorem

The result in Theorem B.2.4 can be presented differently, where the dependence on ` can
be made more clear. This was avoided in the final presentation in the paper since the
theorem was not intended for practical estimations but rather for theoretical justification
and the additional steps in the proof would potentially cloud the main idea. Moreover, the
different result is only valid in the Frobenius norm. We nevertheless state the different
version of Theorem B.2.4 here.

Theorem 3.2.1 (Low-rank approximability). Let L be the Sylvester operator (B.1), let Π
be the linear operator from (B.2), and let C1, C2 ∈ Rn×r. Moreover, let k be a positive
integer and let X(`) be the truncated Neumann series (B.7). Then there exists a matrix
X̂(`) such that

rank(X̂(`)) ≤ (2k + 1)r +
∑̀
j=1

(2k + 1)j+1mjr,

and

‖X(`) − X̂(`)‖F ≤ Ke−π
√
k‖C1C

T
2 ‖F ·

(
1− β`+1

1− β
+ P

(
1− β`

(1− β)2
− `β`

1− β

))
,

where β = ‖L −1 Π‖F , P = ‖L −1 ‖F ‖Π‖F , and K is a constant that only depends on
L ; specifically K does not depend on k or `.

Proof. The proof is based on considering the sequence Yj of the Neumann series (B.6),
and creating a sequence of approximations Ψj for which we can bound the error and the
rank. Consider the following three related sequences of matrices: Let Υ0 = L −1(C1C

T
2 )

and Ȳ0 = L −1
k (C1C

T
2 ), and define the recursions

Ψj = The optimal (SVD-based) approximation of Υj with rank equal to that of Ȳj

Υj = −L −1(Π(Ψj−1))

Ȳj = −L −1
k (Π(Ψj−1)),
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where the first recursion is valid for j = 0, 1, 2, . . . , the second and third for j = 1, 2, . . . ,
and operator L −1

k is the approximation given in equation (B.10). We claim that the matrix
X̂(`) :=

∑`
j=0 Ψj fulfils the assertions.

First, note that from construction the rank bound for X̂(`) is analogously to the rank
bound in the proof of Theorem B.2.4.

Second, to prove the error bound we use the triangle inequality to get

‖X(`) − X̂(`)‖F ≤
∑̀
j=0

‖Yj −Ψj‖F . (3.2)

Hence, we consider ‖Yj −Ψj‖F . We use the triangle inequality, and the fact that Ψj is not
a worse approximation of Υj than Ȳj is, when measured in Frobenius norm. Thus,

‖Yj −Ψj‖F ≤ ‖Yj −Υj‖F + ‖Υj −Ψj‖F ≤ ‖Yj −Υj‖F + ‖Υj − Ȳj‖F
≤ β‖Yj−1 −Ψj−1‖F +Ke−π

√
kPβj−1‖C1C

T
2 ‖F ,

where the last inequality follows from the low-rank approximability result for the Sylvester
equation presented in Remark B.2.3, and ‖Ψj−1‖F ≤ ‖Ȳj−1‖F = ‖−L −1(Π(Ψj−2))‖F .
The recursion can be solved for equality, and then from non-negativity we conclude that

‖Yj −Ψj‖F ≤ Ke−π
√
k‖C1C

T
2 ‖Fβj−1 · (β + jP ) .

The total error bound follows from summing up the bounds on each term in the sum (3.2).

Based on the theorem it is possible to formulate an bound of error ‖X − X̂(`)‖F by
using the triangle inequality and the result in Remark B.2.2. Note that X̂(`) is an explicit
construction that gives a bound, and it is neither claimed that it is an optimal construction,
nor that it is practically computable. We also note that ‖L −1 Π‖F refers to the operator
norm induced by the Frobenius norm, which is the same as the induced operator 2-norm
of the corresponding Kronecker matrices.

3.3 Regarding paper C: Residual-based iterations for the
generalized Lyapunov equation

The paper is co-authored with Tobias Breiten and is published in BIT Numerical Mathe-
matics, volume 59, pages 823-852, December 2019.

Contribution: The results emerged from a trial-and-error process based on a collabo-
ration which to a large degree was framed in discussion with E. Jarlebring and T. Breiten. I
worked closely together with, and under the supervision of, T. Breiten on the development
of the ideas, the theorems, and the proofs. I did most of the implementation, conducted
the simulations, and wrote most of the manuscript. However, the theory presented in Sec-
tion C.3.2 is entirely the work of T. Breiten.
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In Paper C the generalized Lyapunov equation (2.9) is considered, i.e.,

AX +XAT +
m∑
i=1

NiXN
T
i = CCT .

Specifically, it is assumed that the A-matrix is symmetric and negative definite and that
the spectral radius is less than one, i.e., ρ(L −1 Π) < 1. We call such equations stable
generalized Lyapunov equations. Under these assumptions L +Π constitutes a conver-
gent splitting and the operator M := −(L +Π) is positive definite. Therefore we can,
based onM and a weighted Frobenius inner product, define an energy norm in the space
Rn×n. An iterative strategy searching for rank-1 updates that are local minimums of the
error, measured in the energy norm, is presented in [80]. A theoretical justification for
the strategy is extended in Paper C, from the stable Lyapunov equation (as in [80]) to the
stable generalized Lyapunov equation. Similar convergence results are also established for
the fixed-point iteration, which is also shown to minimize an upper bound of the associated
energy norm, although without the rank-1 constraint. Moreover, the generalized Lyapunov
equation is connected to bilinear systems, the solution to the former being Gramians to the
latter as mentioned above (page 41). Hence, there is a connection between model reduc-
tion based on H2-norm minimization of the bilinear systems, and solution methods to the
generalized Lyapunov equation based on energy-norm minimization in Rn×n.

The title of Paper C reflects that the residual equation, a standard result in linear alge-
bra, is a common viewpoint for many of the methods treated in the paper. Furthermore,
based on this viewpoint, a residual-based generalized rational-Krylov-type subspace is pro-
posed. Although there is no complete characterization of the suggested space, it is shown
that it in a certain sense generalizes the rational Krylov subspace for the Lyapunov equa-
tion. The suggested search space is also accompanied with different possible changes, thus
providing a family of related search spaces.

Outlook and extensions

Simulations of an RC circuit

Due to space constraints the following simulation was not included in the final version
of the paper. In this example we consider an RC-circuit, reported in [85, Example 3].
Similarly to the examples in Section C.6 it is a bilinear control system, stemming from a
Carleman bilinearization (similar to the Burgers’ equation in Section C.6.3). We approx-
imate the associated controllability Gramian of a problem of size 5112 × 5112, and as
in Section C.6.3 the control law is scaled such that the control matrices are scaled with
α = 0.5. The scaling does not change the dynamical system, although it in some sense
changes the difficulty of the computational problem. However, the scaling may change the
region in which accurate estimates can be done; see, e.g., [17] for further details.

Convergence of the different methods are plotted in Figures 3.3 and 3.4. The plots to
the left show convergence in relative residual norm, and to the right in relative error. The
labels in the legends are as in the respective figures in Paper C, and method A are the same
in both Figure 3.3 and 3.4. The results are in line with the conclusions of Paper C.
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Figure 3.3: Cross-algorithm comparison for RC circuit. Relative residual norm (left) and
relative error (right).
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Figure 3.4: Rational-Krylov-type method comparison for RC circuit. Compare with Fig-
ure 3.3 as the lines for method A are the same in both figures. For a description of the
labels, see the beggnining of Section C.6.
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Rewriting as a nonlinear eigenvalue problem with eigenvector nonlinearities

Both ALS and BIRKA suffers from that if updates of higher ranks are desired, then the
computational costs increase quickly, see Remark C.3.13 and [80, Remark 2.2]. The sit-
uation in Paper C is that ALS is applied iteratively to the residual equation, thus forming
an inner–outer method for the generalized Lyapunov equation. However, it could be valu-
able to construct updates of higher ranks directly, as seen, e.g., in a comparison between
convergence of BIRKA and ALS. Hence, we investigate possible ways to rewrite the prob-
lem that would allow for computing updates of higher ranks, without the need of solving
a generalized Sylvester equation (with large left side and small right side). We present
some ideas below, although in initial experiments they do unfortunately not seem to yield
competitive results.

When utilizing the ALS iteration, or equivalently BIRKA with a rank-1 subspace, we
expect, at convergence, to get a solution that satisfies

Ax+ xvTAT v +
m∑
i=1

NxvTNT v +Rkv = 0, (3.3)

where x = dv for some scalar d and ‖v‖ = 1. Numerical investigation suggests that for
higher ranks, BIRKA tends to converge toX ≈ V D, where V TV = I andD is a diagonal
matrix, to about numerical precision. The idea is thus to try to compute a fixed point of this
structure in a different way. To keep the initial investigation simpler we start by looking at
the rank-1 case and numerically evaluate a few different schemes.

Equation (3.3) can be understood as a nonlinear eigenvalue problem, although not of
the type treated above, but with eigenvector nonlinearities (Remark 2.4.21). Since v is a
vector, as opposed to a matrix, there is an ambiguity in how to formulate the eigenvector-
dependent matrix function. We can formulate the problem both as(

A+
(
vTAT v

)
I +

m∑
i=1

Ni
(
vTNT

i v
))

v = λRkv, (3.4)

and as (
A+ vvTAT +

m∑
i=1

Nivv
TNT

i

)
v = λRkv, (3.5)

where λ = −1/d. In both cases we believe that eigenvalues with small magnitude would
yield desired directions, since it correspond to vectors with large magnitude in (3.3). The
formulation (3.4) is closer to how the ALS iteration looks like, although it utilizes that(
vTAT v

)
and

(
vTNT

i v
)

are scalars, which is not true unless v is a vector. On the contrary,
that v is a vector is not exploited in formulation (3.5). However, both formulations relies
on d being a scalar and are hence not directly applicable when generalized to higher ranks.
Thus, we consider non-normalized versions, where we multiply (3.3) with

√
d from the

right (to allow for generalizations to higher ranks). The substitution w = v
√
d and some
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manipulation gives((
wTATw

)
I +

m∑
i=1

Ni
(
wTNT

i w
)

+Rk

)
w = λAw, (3.6)

and (
wwTAT +

m∑
i=1

Niww
TNT

i +Rk

)
w = λAw, (3.7)

where λ = −d. In both cases we believe that looking for eigenvalues with large magnitude
would yield desired directions. In addition, if the solution X is real, then we believe that
the eigenvalues should be negative and real, which is a complicating factor. However, note
that formulation (3.7) would be possible to extend to updates of higher rank, with V and a
diagonal matrix D.

To test the performance we implement naive fixed-point solvers for the nonlinear eigen-
value problems (3.4)–(3.7) similar to the well-known self-consistent field iteration; see,
e.g., [135]. In the implementation we do 10 steps, and additionally look for negative real
eigenvalues. The eigenvalues of the generalized eigenvalue problems solved in each step
are approximated with the MATLAB command eigs, i.e. approximating only a few eigen-
values with a Krylov method. We continue the simplified naming convention from Paper C
and use the following short labels:

• G: The described naive fixed-point solver for (3.4)

• H: The described naive fixed-point solver for (3.5)

• I: The described naive fixed-point solver for (3.6)

• J: The described naive fixed-point solver for (3.7).

The approaches are also compared to the ALS approach and method A presented in Pa-
per C. We test on the heat equation and the Burger’s equation from Section C.6, and the
results are found in Figures 3.5 and 3.6 respectively. We see that in the symmetric case
(heat equation) method G has similar performance as ALS and method A. However, the
method of interest, J, performs worse. Moreover, in the non-symmetric case (Burgers’
equation) the performance is poor for all the methods G, H, I, and J. This discourages
further studies of the more complicated case with higher ranks.

As a further note, if Rk = uuT , i.e., rank 1. Then the solution to (3.4) has the form
v = (A − σI −

∑m
i=1 µiNi)

−1u, where σ and µi for i = 1, . . . ,m are scalars, although
dependent on v. The eigenvalue is λ = 1/(uT (A − σI −

∑m
i=1 µiNi)

−1u). The update
for v can be compared with the spaces mentioned in the closing section of the paper, i.e.,
Section C.7. However, as noted in the section, we have not been able to utilize such type
of space efficiently.
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Figure 3.5: NEP-type method comparison for the heat equation. Compare with Figures C.1
and C.2. Relative residual norm (left) and relative error (right).
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Figure 3.6: NEP-type method comparison for the Burgers’ equation. Compare with Fig-
ures C.6 and C.7. Relative residual norm (left) and relative error (right).
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3.4 Regarding paper D: Nonlinearizing two-parameter eigenvalue
problems

The paper is co-authored with Elias Jarlebring, and is accepted for publication in SIAM
Journal on Matrix Analysis and Applications, 2021.

Contribution: The initial research idea was due to E. Jarlebring, who also did most
of the implementation and performed the numerical experiments in Section D.5. I worked
together with, and under the supervision of, E. Jarlebring. The ideas were developed in
close collaboration and the writing of the manuscript was a joint effort. I did most of the
work on Section D.4.

In paper D we treat the two-parameter eigenvalue problem: Given two sets of matri-
ces A1, A2, A3 ∈ Cn×n and B1, B2, B3 ∈ Cm×m, determine eigenvalues λ and µ, and
eigenvectors x ∈ Cn×n and y ∈ Cm×m, with x 6= 0 and y 6= 0, such that

A1x+ λA2x+ µA3x = 0

B1y + λB2y + µB3y = 0.

If the second equation is of smaller dimension than the first, i.e., m � n, then we can
imagine a variable elimination technique based on solving the second equation.3 More
specifically, for a fixed value λ the second equation can be written as the generalized eigen-
value problem (GEP) to find µ such that

− (B1y + λB2y) = µB3y.

The GEP corresponds to the pencil (− (B1 + λB2) , B3); see Definition 2.1.17 (page 9).
In principle, for each λ we can solve for µ and thus we have µi = gi(λ) being a family of
functions of λ. When substituted into the first equation we get a NEP,

M(λ)x := A1x+ λA2x+ gi(λ)A3x = 0.

Except for special cases, such as, e.g., the example in Section D.5.2, the NEP cannot be
constructed explicitly. There are, e.g., in general multiple branches i = 1, 2, . . . ,m; see
Remark D.3.3. However, M(λ), as well as its derivative(s), can be evaluated. Thus, it is
possible to apply NEP-methods to solve for x and λ, as well as µ = gi(λ), while exploit-
ing the special structure of the problem. Results about existence of the nonlinearization,
equivalence between solutions, and analyticity of the functions gi are presented.

We can also imagine a reversed idea. Given a NEP, e.g., of the form above, find a two-
parameter eigenvalue problem such that the NEP is a nonlinearization of the two-parameter
problem. Under certain conditions the two-parameter eigenvalue problem can be rewritten
as a pair of GEPs called the Delta equations, (D.4)–(D.7). Hence, the reversed idea, treated
in Sections D.2.2 and D.2.3, results in linearizations for NEPs.

3The theory does not require such a structure between the two equations. However, the computational effi-
ciency depends on one of the equations being computationally cheaper to solve.
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Outlook and extensions

An example of linearization

We exemplify the linearization proposed in Section D.2.3 and consider the NEP

M+(λ) := A1 + λA2 +
√
p(λ)A3,

with p(λ) =
√

2(1 + λ)(−1 + λ) and A1, A2, A3 ∈ R287×287 random. With reference
to Lemma D.2.5 we have b = 2, c = −1, e = 2, and f = 1, and the corresponding
linearization is given by the GEP[

A1 −2A3

A3 A1

]
z = λ

[
−A2 2A3

A3 −A2

]
z.

The GEP is also a linearization ofM−(λ) := A1+λA2−
√
p(λ)A3. Moreover, the square-

root function has branch cuts along the imaginary axis, and the real part is non-smooth in
the points λ = ±1 and λ = ±1i. The GEP is solved with the Julia command eigen and
a corresponding eigenvector x is extracted from a low-rank factorization of Z ∈ C287×2,
where z = vec(Z) is a corresponding eigenvector of the GEP. We measure the error with
the relative residual, i.e., ‖M±(λ)x‖/‖x‖, and with a tolerance of 10−10 all the computed
eigenpairs to the GEP can be classified as belonging to exactly one of the two NEPs.4 For
this specific example we get that 284 eigenpairs are from the plus-problem, and 290 from
the minus-problem. We also apply the infinite Arnoldi method directly to the NEP, with a
set of different expansion points; the result is found in Figure 3.7.

An example of singular pencils and a note about regularity

The following example is to further elaborate on the necessity of the assumption that the
pencil is regular, as discussed in Remark D.2.4,. Let A1, A2, and A3 be suitable matrices,
possibly random. Specifically, let

B1 =

[
1 0
0 3

]
B2 =

[
1 0
0 2

]
B3 =

[
0 0
0 −1

]
.

We note that if we fix λ = −1, then the pencil (−(B1 + λB2), B3) is singular since the
vector

[
1 0

]T
is in a common kernel. In the literature about singular pencils, eigenvalues

µ are defined as the numbers where the rank ofB1+λB2+µB3 is lower than for almost all
other values of µ (Definition 2.1.20). However, in the case of the two-parameter eigenvalue
problem the interest is in the so called indeterminate eigenvalue(s), in the tuple-notation
denoted as (0, 0), or 0/0. The reason is that for λ = −1 the second equation, i.e., (D.1b), is
fulfilled independently of the value of µ. Thus, µ can be (independently!) determined from
the first equation, i.e., (D.1a), with λ = −1 fixed. Hence, we can get a set of eigenvalues

4With a lower tolerance some of the eigenpairs are not accurate enough. However, we do not find that a
higher tolerance results in any ambiguity.
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Figure 3.7: Linearization of a NEP. Eigenvalues of M+ computed with the linearization
are marked with as black dots. Expansion points of the different runs of the infinite Arnoldi
method is described in the legend. The red circle is centered in 0 with radius 1.

(λ, µ1), . . . (λ, µp) for some p ≤ n.5 However, in the context of the methodology presented
in Paper D, the GEP (D.9) cannot be used to determine µ as a function of λ in these points
and the proposed methods cannot be used to find these eigenvalues. Nevertheless, if a
singular pencil is found during an iteration, the theoretical difficulty turn into a practical
success since a lot of eigenvalues can be readily computed (depending on the A-matrices).
Specifically for the example, the eigenvalue µ leading to a solution to the two-parameter
eigenvalue problem is characterized by the GEP (D.9), in tuple-notation, as the eigenvalue
(−1−λ, 0). Thus, µ can be said to be infinite for all values of λ, except for λ = −1 where
it is indeterminate (and therefore decoupled from equation (D.1b)).

We make the example concrete with the (random) matrices

A1 =

 0.576838 0.193553 0.879279
−0.952504 0.176529 −0.535042
0.109573 −0.347555 −0.661395


A2 =

−0.143499 −0.165619 0.553076
−1.72746 0.872228 0.681078

1.2422 −0.159712 0.479209


A3 =

 0.916539 −1.34833 −1.80063
−0.911508 0.374915 0.375432
0.257238 0.416975 0.149073

 .
5The exact characterization depends on the A-matrices and the properties of the pencil corresponding to the

GEP (D.1a) with λ = −1 fixed.
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Solving the delta equations (specifically equation (D.7a)) using the Julia command eigen
gives the following values for λ:

− 1.0648851076328816− 0.21119187635008602i −0.9999999999999997 + 0.0i

− 1.064885107632882 + 0.21119187635008588i −0.9999999999999999 + 0.0i

− 11.408278083951545 + 0.0i −1.0000000000000002 + 0.0i,

where three eigenvalues are (up to about numerical precision) equal to−1, as suggested by
the discussion above. Using the methodology from Paper D we apply the infinite Arnoldi
method and compute the eigenvalue approximations

−1.0648851076328993− 0.21119187635005965i

−1.064885107632902 + 0.21119187635005895i

−11.408278084043012− 2.5762450681028322i · 10−15.

Convergence is achieved towards the eigenvalues that are different from −1, as expected.

An example of non-simple eigenvalues

Consider the example

A1 =

[
3 1
0 7

]
A2 =

[
1 0
0 2

]
A3 =

[
2 0
0 5

]
B1 =

[
1 1
0 3

]
B2 =

[
0 0
0 2

]
B3 =

[
1 0
0 1

]
.

Note that λ = −1 and µ = −1 is a solution to the two-parameter eigenvalue prob-
lem. More precisely, it is a solution of algebraic multiplicity 4, and geometric multi-
plicity 1; see, e.g., [102]. The eigenvalues of the GEP (D.9) are µ = g(λ) = −1 and
µ = g(λ) = −3 − 2λ. Hence, for λ = −1 we have that µ = −1 is a double eigen-
value, and specifically a non-semisimple eigenvalue since

[
1 0

]T
is the only eigenvector.

Thus, the theory derived in Section D.2 does not guarantee that these eigenvalues of the
two-parameter eigenvalue problem can be found with the nonlinearization method. See the
discussion in Remark D.2.4. However, in practical tests with the infinite Arnoldi method
we manage to compute the eigenvalue λ = −1 up to multiplicity two. Convergence is
plotted in Figure 3.8. We observe that convergence seems to occur simultaneously, and it
seem plausible that we find λ = −1 as a double eigenvalue for g(λ) = −3− 2λ.

3.5 NEP-PACK: A Julia package for nonlinear eigenproblems

NEP-PACK is a software for solving nonlinear eigenvalue problems (page 43). It is a
package for the programming language Julia6 [22]. Within the Julia ecosystem it is known

6https://julialang.org/
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Figure 3.8: The SPMF relative residual is a weighted relative residual measured as ‖(A1 +
λA2 + g(λ)A3)x‖/ (‖x‖ (‖A1‖F + ‖A2‖F |λ|+ ‖A3‖F |g(λ)|)).

as NonlinearEigenproblems.jl. The code is, at the time of writing, available on GitHub7

and the main co-developers are Elias Jarlebring, Max Bennedich, Giampaolo Mele, and
Parikshit Upadhyaya.

Contribution: I implemented (most of) the Jacobi–Davidson methods and safeguarded
iteration. I moreover took part in the system design, e.g., designing and implementing
basic interfaces and types, linear solver structure, and deflation and projection. I was also
involved in practical development work such as, e.g., testing and writing documentation.

NEP-PACK implements a large number of state-of-the-art solvers in a coherent way.
Thus, fair comparisons between algorithms are facilitated. However, the package allows
for specializations based on exploiting problems-specific structures. In order to do so it
utilizes the multiple dispatch feature built in to the Julia language and relies on a set of
interfaces, that are implemented for the standard built-in types and are assumed to exists
for user-specified types. Different types of NEP can have different properties, but to access
the NEP the follwoing interfaces are defined:

• compute_Mder(NEP,lambda,k) returns the kth derivative of the NEP M in
λ, i.e.,

M (k)(λ).

• compute_Mlincomb(NEP,lambda,V,a) returns a linear combination of the
k first derivatives of the NEP M multiplied with the k vectors in V ∈ Cn×k, and
scaled with the coefficients in a ∈ Ck, respectively, i.e.,

k∑
i=0

aiM
(i)(λ)vi.

7https://github.com/nep-pack/NonlinearEigenproblems.jl
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• compute_MM(NEP,S,V) returns the block residual (Definition 2.4.12) of the
NEP M evaluated in the pair (X,S) ∈ Cn×m × Cm×m, i.e.,

1

2πi

∮
Γ

M(z)V (zI − S)−1dz.

Although the interfaces have standard implementations for the generic built-in types, the
package is agnostic to the actual implementation, which is one point where structure ex-
ploitation enabled. As an example, for a NEP in the SPMF format (equation (2.14)),
compute_MM(NEP,S,V) is computed as in Proposition 2.4.13, i.e.,

∑m
i=0AiV fi(S).

The NEP-interfaces are equivalent in the sense that there are ways to convert from one to
the others, although it may be computationally costly. Further common interfaces covers
steps and computations typically performed by an algorithm, and involves, e.g.,

• lin_solve(solver, b) for solving linear systems of the type M(λ)v = b.
The first argument, the solver to be used, is constructed by the algorithm in a call to
the interface create_linsolver(creator,NEP,lambda). The latter can
be influenced by the user through passing a proper LinSolverCreator as an
argument to the NEP-method. The structure is useful since, e.g., a fixed-shift method
will create a solver object only once, whereas variable-shift methods will need to
create a new solver in each iteration. Hence, pre-factorization or construction of
preconditioners can be used efficiently.

• projection and solving projected problems, i.e.,WHM(λ)V z = 0. If the original
problem is a ProjectableNEP, then create_proj_NEP(orgnep) creates a
wrapper of the original NEP handling the transformation. The interfaces covers both
setting and extending of projection matrices. The projected problem can be solved
using a variety of different methods and the user can decide by calling a NEP-method
with an InnerSolver, which in turn defines another NEP-method.

• estimate_error(errmeasure,lambda,v) returns a measurement of the
error for the approximate eigenpair (λ, v) and is called by the NEP-methods when
appropriate. If the errmeasure is a function, e.g., err(lambda,v), then it is sim-
ply evaluated like that. More complicated behavior can be achieved by using the
type Errmeasure.

• logging and printing can be adjusted by passing an appropriate Logger as an argu-
ment to the NEP-method. Default implementations are available for printouts and
storing the error history. However, note that error history derives its meaning from
the errmeasure used, see the point above.

All of these have default behavior, with some defaults relying on the above mentioned
NEP-interfaces, but all of them can be adapted by an experienced user depending on the
needs. As an example the results from Paper A are also implemented in NEP-PACK, with
the linear solver based on the Schur-complement approach and applying the Sylvester-
based preconditioning to iterative linear solvers such as GMRES. Moreover, NEP-PACK
is used in Paper D to solve the NEPs stemming from the proposed nonlinearization.
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The latest release of NEP-PACK can be easily downloaded from within Julia. In the
Julia REPL (the interactive command-line prompt) hit the key ] and write� �

(@v1.5) pkg> add NonlinearEigenproblems� �
Once downloaded, the package can be accessed by typing� �

julia> using NonlinearEigenproblems� �
We show an example on how to create, solve, and work with the NEP

M(λ) =

[
1 2
3 4

]
+

[
5 6
7 8

]
λ2 +

[
9 10
11 12

]
sin(λ).

The NEP is easily expressed on the SPMF-format, and can be constructed as follows.� �
julia> A1 = [1.0 2.0; 3.0 4.0];
julia> A2 = [5.0 6.0; 7.0 8.0];
julia> A3 = [9.0 10.0; 11.0 12.0];
julia> f1 = λ -> one(λ);
julia> f2 = λ -> λˆ2;
julia> f3 = λ -> sin(λ);
julia> M = SPMF_NEP([A1,A2,A3], [f1,f2,f3]);� �

We apply the method of successive linear problems (MSLP), see [114], with the starting
guess λ = −1− 1i, and ask for the iterates to be printed (logger=1).� �

julia> λ,v = mslp(M, λ=-1.0-1.0im, logger=1)
iter 1 err:0.007553404639821915 λ=-0.6374605262901563 - 0.7586814312049742im
iter 2 err:0.0008492664592764308 λ=-0.4885316471868991 - 0.7695470071121764im
iter 3 err:9.395446772710654e-6 λ=-0.4883376602368649 - 0.7856553612819912im
iter 4 err:1.1471784761573207e-9 λ=-0.48837428951380446 - 0.7854814297206311im
iter 5 err:2.590028563744081e-17 λ=-0.4883742950536423 - 0.7854814083852718im
(-0.4883742950536423 - 0.7854814083852718im, Complex{Float64}[0.6732256366906284
+ 0.2162573543777702im, -0.6732256367855572 - 0.2162573484409407im])� �

The output tells us that the method converges, in 5 iterations, to an eigenvalue approxima-
tion λ ≈ −0.488−0.785i. We can double-check the convergence by computing the relative
residual8, i.e., verify that ‖v‖ = 1 and compute ‖M(λ)v‖ with compute_Mlincomb.� �

julia> norm(v)
1.0
julia> norm(compute_Mlincomb(M,λ,v))
9.742167503148516e-16� �
8Note that the default error measure for NEPs in the SPMF format is a relative residual weighted with

1/(
∑m
i=0 ‖Ai‖F |fi(λ)|). Specifically, in the given example the weight is 0.026585752738361605.
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We can also verify that λ is an eigenvalue by computing the singular values of M(λ),
utilizing a call to compute_Mder. We see that one singular value is numerically zero.� �

julia> svdvals(compute_Mder(M,λ))
2-element Array{Float64,1}:
14.35097831034869
7.021666928587148e-16� �

3.6 Preconditioning for linear systems

Preconditioning for linear systems is a textbook co-authored with Giampaolo Mele, David
Ek, Federico Izzo, Parikshit Upadhyaya, and Elias Jarlebring. The book is self-published
via Kindle Direct Publishing (Amazon), 2020. A PDF-version is freely available online.9

Contribution: All authors were more or less involved in all parts of the book. How-
ever, for each chapter there are two main authors. I was one of the main author of Chap-
ters 2 (general preconditioners) and 5 (multigrid), as well as involved in proofreading,
aligning notation, and compiling the index and references. The final typesetting, figure
generation, and proof reading was mostly done by G. Mele and E. Jarlebring.

Preconditioning is a technique used to accelerate convergence of iterative methods for
solving linear systems. To set the notation we recall the classical setting: Let A ∈ Cn×n
and b ∈ Cn be given, find x ∈ Cn such that

Ax = b.

When the matrix becomes large, direct methods are often too expensive in terms of both
number of operations and memory requirements. Hence, iterative methods are applied
since these are, typically, cheaper, but in return computes approximations (to some toler-
ance). Convergence of iterative methods is often characterized in terms of the spectrum of
A, as well as the pseudospectra,10 but the right-hand side also affects the convergence. Let
PL, PR ∈ Cn×n be nonsingular, then preconditioning can be viewed as working with one
of the following equivalent problems

PLAx = PLb

APR
(
P−1
R x

)
= b

PLAPR
(
P−1
R x

)
= PLb,

which are called left preconditioning, right preconditioning, and left and right precondi-
tioning, respectively. The matrix PL is known as a left preconditioner and PR as a right

9http://preconditioning.se
10Pseudospectra characterizes of how sensitive the spectrum of the matrix is with respect to perturbations,

which is especially useful for non-normal matrices. Formally it can be defined as σε(A) := {λ ∈ C : λ ∈
σ(A+ ∆), ‖∆‖ < ε}, although there are equivalent characterizations, see, e.g., [132, 134].
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preconditioner. In the presence of a right preconditioner it is typical to consider the vari-
able change x = PRy, i.e., the linear system is solved for y, and x is then retrieved by one
more application of the right preconditioner. Although we can view preconditioning as
working with the equivalent problems listed above, when preconditioners are incorporated
into iterative solvers the algorithms are adapted in such a way that the corresponding ma-
trices, e.g., PLA, do not have to be explicitly computed; such computation is both costly
and it may destroy features such as sparsity.

Designing a good preconditioner often relies on domain-specific knowledge, although
there are general classes and techniques to construct preconditioners. A good precondi-
tioner needs to balance two important factors: First, the preconditioned system must have
better convergence properties than the original system, and second, there must be an effi-
cient way of computing the preconditioner (or action thereof). We exemplify this balance
with two extreme cases of left preconditioning. First, PL = A−1 has perfect approxima-
tion properties, but the computational challenge is as large as the original problem. Second,
PL = I is trivial to compute, but it does not alter the convergence properties of the original
linear system.11

We briefly describe some of the techniques from chapters 2 and 5 in the book. The
former chapter covers classical iterative methods and how these can be utilized to derive
preconditioners. The methods involved are the Jacobi method:

xk+1 = D−1 ((L+ U)xk + b) ,

the Gauss–Seidel method:

xk+1 = (D − L)
−1

(Uxk + b) ,

and successive over-relaxation (SOR):

xk+1 = ω (D − ωL)
−1

((
U +

1− ω
ω

D

)
xk + b

)
,

where we have A = D − L − U , with D diagonal, L and U strictly lower and upper
triangular, respectively, and ω a parameter in the range 0 < ω < 2. The methods are fixed-
point iterations, and can all be written in a generic form as xk+1 = P−1 (−Nxk + b),
where A = P +N for some matrices P and N . Specifically,

PJacobi = D, PGauss–Seidel = D − L, PSOR =
1

ω
(D − ωL) .

The fixed-point iteration, if convergent, is a way to solve (I+P−1N)x = P−1b. By using
the identityN = A−P , an equivalent way to write the system is P−1Ax = P−1b. Hence,
these schemes are equivalent to fixed-point iterations on a system preconditioned with P−1

[119, Chapter 4]. The fixed-point iteration converges for all right-hand sides b if and only
if the spectral radius ρ(P−1N) < 1. Moreover, the eigenvalues of the corresponding

11The discussion is a direct analogue to the one about projection spaces for the Sylvester equation (page 35).
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preconditioned system are σ(P−1A) = σ(I +P−1N) = {z ∈ C : z = 1 + λ, where λ ∈
σ(P−1N)}. Hence, in the case of a convergent fixed-point iteration, the eigenvalues of the
preconditioned system are located in a disk with origin in 1 and radius less than 1.

Another classical method for linear systems is the LU decomposition combined with
forward and backward substitution, i.e., the matrix is factorized as A = LU , where L
is lower triangular with ones on the main diagonal and U upper triangular, and the two
systemsLy = b andUx = y are solved. The LU-factorization is a basis for direct methods.
However, for large systems it is not desirable to compute the factorization. One problem
is that even for a sparse matrix the factors L and U may be full. The incomplete LU
factorization (ILU) is an approximation based on allowing nonzero elements only in certain
positions. Usually a zero pattern is defined which specifies entries to be excluded from the
computations, which saves both memory and computation. Let L and U be an ILU of
A, then we write A = LU + R, and for a certain class of matrices and class of zero
patterns this splitting is a regular splitting. Hence, the fixed-point iteration converges,
and from the analysis above about fixed-point iterations and preconditioners we have that
PL := (LU)−1 is a left preconditioner. The preconditioner PL is never formed explicitly,
instead sparsity and structure of L and U is exploited so that the preconditioner can be
applied efficiently. The derivation and motivation can be explained by connecting matrices
to graphs, for details see the textbook. The material is also covered in, e.g., [119].

Multigrid is the topic of Chapter 5, and it is a technique originally developed for solving
differential equations. It is a class of direct solvers, but less accurate versions are also
used as preconditioners. A first guiding idea is the intuition that the solution is more easily
obtained on a coarsely discretized grid. By clever interpolation onto a finer grid, that coarse
solution can then be used as a starting guess for a solver on the fine grid. The argument
can be made more precise by analyzing Fourier modes and their respective frequencies,
and how iterative solvers suppresses errors in high frequencies more efficiently. A second
guiding idea is based on a correction scheme. Consider the standard problem, i.e., Ax = b,
and think of y as an approximation of x. We define e := x−y and r := b−Ay, which can
be understood as the error and residual, respectively. From linearity we have the residual
equation

Ae = r,

which relates the residual with the error. The residual r is (fairly) easy to compute, and
hence the residual equation allows us compute approximations of the error, that can be
used to correct the approximation y. Combining the two ideas we can explain the V-cycle:
The method starts the computations on the fine grid, computes an approximation, e.g.,
with a few iterations of the (damped) Jacobi method, and projects the residual onto the
coarser grid. The procedure can be repeated a desired number of times until we reach the
coarsest grid, and on that gird the system i solved with an appropriate solver and to desired
accuracy. The computed correction (remember, it was the residual that was projected to
a coarser grid) is interpolated to a finer grid, and used to correct the previously computed
approximation on that grid. The corrected approximation is used as an initial guess for an
iterative method, e.g., the (damped) Jacobi method. The process is repeated until it reaches
the finest grid, where it started. The “V” in V-cycle is an illustration of the hierarchy of
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grids used, where the number of points in the grids is on the y-axis, i.e., first from finer to
coarser and then from coarser to finer.

Algebraic multigrid is an adaptation of multigrid to a general matrix, where there is no
underlying physical grid. Hence, what could be previously motivated from geometry, i.e.,
spatial frequencies of the Fourier modes, selection of grid, and operators for projection and
interpolation (although we did not treat the details above), have to be translated to algebraic
analogies. Such an endeavor can be completed by, once again, connecting matrices to
graphs; for details see, once again, the textbook.
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Abstract

We consider a nonlinear eigenvalue problem (NEP) arising from absorbing boundary
conditions in the study of a partial differential equation (PDE) describing a waveguide.
We propose a new computational approach for this large-scale NEP based on residual
inverse iteration (Resinv) with preconditioned iterative solves. Similar to many precon-
ditioned iterative methods for discretized PDEs, this approach requires the construction
of an accurate and efficient preconditioner. For the waveguide eigenvalue problem,
the associated linear system can be formulated as a generalized Sylvester equation
AX + XB + A1XB1 + A2XB2 + K ◦ X = C, where ◦ denotes the Hadamard
product. The equation is approximated by a low-rank correction of a Sylvester equa-
tion, which we use as a preconditioner. The action of the preconditioner is efficiently
computed by using the matrix equation version of the Sherman–Morrison–Woodbury
(SMW) formula. We show how the preconditioner can be integrated into Resinv. The
results are illustrated by applying the method to large-scale problems.

Keywords: Matrix equations, generalized Sylvester equations, PDE-eigenvalue problem,
nonlinear eigenvalue problems, preconditioning, iterative methods.

A.1 Introduction

We are concerned with the study of propagation of waves in a waveguide. The applica-
tion of two well established techniques (Floquet theory and absorbing boundary condi-
tions) leads to the following characterization of wave propagation in R2. Details of such a
derivation can be found, e.g., in [18, 38].
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(b) The absolute value of an eigenfunction.

Figure A.1: Geometry of the benchmark waveguide and an eigenfunction corresponding
to the eigenvalue γ ≈ −1.341 − 1.861i. The same waveguide is used in the numerical
examples, Section A.6. The values Ki indicates regions where the wavenumber κ(x, z)
is constant. For this waveguide K1 =

√
2.3π, K2 = 2

√
3π, K3 = 4

√
3π, K4 = π, and

δ = 0.1.

The characterization is described by a PDE on a rectangular domain S0 := [x−, x+]×
[0, 1]. More precisely, we wish to compute u : S0 → C and γ ∈ C such that

∆u(x, z) + 2γuz(x, z) + (γ2 + κ2(x, z))u(x, z) = 0 (x, z) ∈ S0 (A.1a)
u(x, 0) = u(x, 1) x ∈ (x−, x+)

(A.1b)

uz(x, 0) = uz(x, 1) x ∈ (x−, x+)
(A.1c)

T −,γ [u(x−, ·)](z) = −ux(x−, z) z ∈ (0, 1) (A.1d)
T +,γ [u(x+, ·)](z) = ux(x+, z) z ∈ (0, 1). (A.1e)

The operators T −,γ and T +,γ are the so-called Dirichlet-to-Neumann (DtN) maps, which
we specify in Section A.2. The spatially dependent constant κ(x, z) is the wavenumber,
which in our work is assumed to be piecewise constant. A benchmark example is illustrated
in Figure A.1.

Note that (A.1) is a PDE-eigenvalue problem, where the eigenvalue γ appears in a non-
linear way in the operator as well as in the boundary conditions, due to the γ-dependence
of the DtNs. The problem (A.1) will be referred to as the waveguide eigenvalue prob-
lem (WEP) and we discretize this PDE in a way that allows us to construct an efficient
iterative procedure. More precisely, we derive results and methods with a uniform finite-
difference (FD) discretization, and also investigate its use in combination with a finite-
element method (FEM) discretization. The discretization is presented in Section A.2.2.
Due to the nonlinearity in the PDE-eigenvalue problem, the discretized problem is a non-
linear eigenvalue problem (NEP) of the following form: find (γ, v) ∈ C×Cnznx+2nz\{0}
such that

M(γ)v = 0, (A.2)
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where nx and nz are the number of discretization points in x- and z-direction respectively.
Over the last few decades, the NEP has been considerably studied in the numerical

linear algebra community, and there is a large family of different numerical methods, which
we briefly summarize as follows. A number of methods can be seen as flavors of Newton’s
method, e.g., block Newton methods [21], generalizations of inverse iteration [25, 30]
and generalizations of the Jacobi–Davidson method. See PhD thesis [33] for a summary
of these methods. A number of approaches are based on numerically computing a contour
integral [3, 8], which can be accelerated as described in [42] and references therein. Krylov
methods and rational Krylov methods have been generalized in various ways, e.g., the
Arnoldi based methods [40, 20], rational Krylov approaches [15, 5, 6]. See the summary
papers [24, 30, 41] and the benchmark collection [7] for further literature on methods for
nonlinear eigenvalue problems.

Most of these methods involve the solution to the associated linear system of equations

M(σ)y = r. (A.3)

For large-scale problems, the solution to this linear system is often restricting the appli-
cability of the method. In this work we adapt the method called residual inverse iteration
(Resinv) which was developed in [25]. Resinv is an iterative method for computing the
eigenvalue closest to a given shift σ ∈ C and it has the attractive feature that the shift σ is
kept constant throughout the iterations.

The constant shift allows for precomputation, which reduces the computational effort
for solving the linear systems (A.3). The standard way to exploit this is to precompute the
LU-factorization of M(σ). Unfortunately this is not effective for our large-scale problem,
due to memory requirements. Instead, we propose to solve (A.3) with a preconditioned
iterative method such as GMRES [32] or BiCGStab [39]. Nevertheless, the constant shift
and the structure of M(σ) allow us to carry out substantial precomputations, related to
the preconditioner, in the initialization of Resinv. Other ways to exploit the constant shift,
when using Krylov methods to solve repeated linear systems of the type (A.3), is to recycle
parts of the invariant subspace of M(σ) between different solves, see e.g., [27, 1, 2].

A number of recent approaches exploit that a uniform discretization of a rectangular
domain PDE can be expressed as a matrix equation, e.g., using the Sylvester equation or
Lyapunov equation. The matrix-equation approach has been used, e.g., in the setting of
convection-diffusion equations [26], fractional differential equations [9], PDE-constrained
optimization [36], and stochastic differential equations [28]. Inspired by this, we propose
a new preconditioner for the WEP based on matrix equations. As a first step, shown in
Proposition A.2.2 and Section A.3, the linear system of equations (A.3) is formulated as
a matrix equation. In Section A.4, this matrix equation is approximated by a low-rank
correction of a Sylvester equation, i.e.,

L (X) + Π(X) = C (A.4)

where L is a Sylvester operator and Π is a low-rank linear operator of the form Π(X) :=∑N
k=1 W k(X)Ek, and where W k : Cn×m → C, k = 1, . . . , N are linear functionals.

We use a matrix equation version of the Sherman–Morrison–Woodbury (SMW) formula
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to solve (A.4). In Section A.5 we describe how this can be done in a fast and memory
efficient manner using the structures in our problem. A dominating part of the computation
is independent of C and can therefore be precomputed. Properties of the approach are
illustrated in Section A.6, where we also compare the performance with other approaches.

In this paper we develop specialized techniques for solving the WEP (A.1). The over all
framework developed is based on certain general structures of the model problem (A.1),
and can be generalized to other problems. Important properties of the model problem
are: The dominant operators (the derivatives) only acts in one (spatial) dimension. The
problem is defined on a rectangular domain. The PDE is such that a uniform discretization
is effective.

The following notation is adopted in this paper. We let A ◦ B denote the Hadamard,
or element-wise, matrix product between A and B, and A ⊗ B denotes the Kronecker
product. We let vec(A) ∈ Cnm denote the vectorization of A ∈ Cn×m, i.e., the vector
obtained by stacking the columns of A on top of each other. The set of eigenvalues of the
matrix A is denoted eig(A). The n × n identity matrix is denoted In, and the ith column
of In is denoted ei. The matrix Jn ∈ Rn×n denotes the anti-diagonal matrix with ones on
the anti-diagonal, that is [Jn]k,` = 1 if k = n− `+ 1 and 0 otherwise. The column vector
consisting of ones is denoted by 1.

A.2 Background and preliminaries

A.2.1 Problem background

The PDE (A.1) stems from the propagation of waves in a periodic medium. We briefly
summarize the derivation and point out the properties needed in our context. See [18, 38]
for details.

Consider the Helmholtz’s equation

∆v(x, z) + κ(x, z)2v(x, z) = 0 (x, z) ∈ R2, (A.5)

where κ(x, z) ∈ L∞(R2) is the wavenumber. The wavenumber is a 1-periodic function
in the z-direction which is constant for sufficiently large |x|, i.e., κ(x, z + 1) = κ(x, z)
for all x, z, and there exists real numbers ξ− and ξ+ such that κ(x, z) = κ− for x < ξ−
and κ(x, z) = κ+ for x > ξ+. We are studying Floquet modes which are solutions
corresponding to the ansatz

v(x, z) = eγzu(x, z)

where u(x, z + 1) = u(x, z) in (A.5) and we apply absorbing boundary conditions at
x = x− ≤ ξ− and x = x+ ≥ ξ+. From this ansatz we directly identify that u satisfies
(A.1a). A more precise analysis (presented in [18]) shows that (A.1d)–(A.1e) also are
satisfied where the DtN-maps are defined by

T ±,γ [g](z) :=
∑
k∈Z

s±,k(γ)gke
2πikz, (A.6)
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where {gk}k∈Z are the Fourier series coefficients of the function g(z) and sk, for k ∈ Z,
are given by

s±,k(γ) := sign(Im(β±,k(γ)))i
√
β±,k(γ) (A.7a)

β±,k(γ) := (γ + 2πik)2 + κ2
±. (A.7b)

A.2.2 Discretization of the WEP

The PDE (A.1) is in this work discretized as follows. We use a uniform FD discretization
with nx and nz points in x- and z-direction respectively. The grid consists of the points
xk = x− + khx for k = 1, 2, . . . nx where hx = (x+ − x−)/(nx + 1), and z` = `hz for
` = 1, 2, . . . , nz where hz = 1/nz .

This FD-discretization leads to the NEP (A.2) described by the following block matrix

M(γ) :=

[
Q(γ) C1

CT2 P (γ)

]
. (A.8)

The matrix Q(γ) represents the discretization of the interior and the periodic boundary
conditions (A.1a)–(A.1c) and P (γ) represents the Dirichlet-to-Neumann maps, (A.1d) and
(A.1e). The matrix C1 represents the effect of the boundary points to the interior and CT2
represents the effect of the interior on the boundary constraints, i.e., (A.1d) and (A.1e).
The matrix Q(γ) ∈ Cnxnz×nxnz is large and sparse, and given by

Q(γ) := A0 + γA1 + γ2A2, (A.9)

with A0 := DT
xx ⊗ Inz

+ Inx
⊗Dzz + diag(vec(K)), and A1 := 2Inx

⊗Dz , and A2 :=
Inxnz

. Here Dxx ∈ Rnx×nx is the second derivative matrix, and Dz, Dzz ∈ Rnz×nz are
the circulant first and second derivative matrices. That is,Dxx = (−2Inx+Znx+ZTnx

)/h2
x,

Dz = (Znz + e1e
T
nz
−ZTnz

− enze
T
1 )/(2hz), and Dzz = (−2Inz +Znz + e1e

T
nz

+ZTnz
+

enz
eT1 )/h2

z , where Zn ∈ Rn×n is the shift matrix, defined by [Zn]k,l = 1 if k − l = 1 and
0 otherwise.

The matrixK is the discretization of the squared wavenumber, i.e., [K]k,` := κ2(x`, zk).
The block C1 ∈ Cnxnz×2nz is given by

C1 :=
1

h2
x

[
e1 ⊗ Inz

enx
⊗ Inz

]
, (A.10)

and the block CT2 ∈ C2nz×nxnz is given by

CT2 :=

[
d1e

T
1 ⊗ Inz + d2e

T
2 ⊗ Inz

d1e
T
nx
⊗ Inz

+ d2e
T
nx−1 ⊗ Inz

]
, (A.11)

with d1 := 2
hx

, d2 := − 1
2hx

. The last block is P (γ) ∈ C2nz×2nz . To construct this block
we truncate the Fourier series expansion of the DtN-maps (A.1d) and (A.1e), i.e., the series
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in (A.6). In the truncation we use only the coefficients corresponding to k = −p, . . . , p,
and we choose p such that nz = 2p+ 1. Then

P (γ) :=

[
P−(γ) 0

0 P+(γ)

]
=

[
RΛ−(γ)R−1 0

0 RΛ+(γ)R−1

]
(A.12)

with Λ±(γ) := diag(S±(γ)), where S±(γ) :=
[
s±,−p(γ) + d0, . . . , s±,p(γ) + d0

]
, and

d0 := − 3
2hx

, and where s±,k(γ) are defined by (A.7a). Moreover, [R]k,` = e2πi(`−p−1)khz

and R∗ = nzR
−1.

Remark A.2.1 (Action of P (γ)). Note that R is the Fourier matrix left multiplied with the
anti-diagonal matrix having

[
1, e2πiphz , e2πi2phz , . . . , e2πi(nz−1)phz

]
on its anti-diagonal.

Consequently, the action of both R and R−1 on a vector can be efficiently calculated with
the Fast Fourier Transform (FFT) and from (A.12) we conclude that calculating the action
of P−(γ), P−(γ)−1, P+(γ), and P+(γ)−1 on a vector can be done in O(nz log(nz))
operations.

For future reference, we now also note that when γ is in the left-half plane of C the
derivative of M(γ) with respect to γ is given by

M ′(γ) :=

[
Q′(γ) 0

0 P ′(γ)

]
, (A.13)

whereQ′(γ) := A1+2γA2 andP ′(γ) := diag(RΛ′−(γ)R−1, RΛ′+(γ)R−1). The matrices
are directly given by Λ′±(γ) := diag(S′±(γ)), where S′±(γ) :=

[
s′±,−p(γ), . . . , s′±,p(γ)

]
,

s′±,k(γ) := sign(Im(β±,k(γ)))i(γ + 2πik)/
√
β±,k(γ), and β±,k(γ) are given by (A.7b).

A.2.3 Residual inverse iteration for the WEP

Our approach is based on the Resinv [25] as a solution method for the NEP (A.2) with
M(γ) defined by (A.8). Given an approximation to the eigenpair (γk, vk), Resinv itera-
tively computes new approximations in each iteration. In every iteration a new approxima-
tion of the eigenvalue γk+1 is computed by first solving the nonlinear scalar equation

v∗kM(γk+1)vk = 0. (A.14)

There are different ways of choosing the left vector in (A.14) discussed in the literature
[25, 19, 33], but we choose the current approximation of the right eigenvector, as it is
presented in the equation. Equation (A.14) is solved with Newton’s method in one un-
known variable which requires that we calculate the derivative of vHk M(γ)vk with respect
to γ. The derivative, for γ in the left-half plane of C, can be computed from (A.13). The
eigenvector approximation update is done by computing the residual

rk = M(γk+1)vk, (A.15)
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and subsequently calculating a correction to the eigenvector by solving

∆vk = M(σ)−1rk, (A.16)

where σ is a fixed shift that is used throughout the whole procedure. Note that since σ is a
fixed shift, it is possible to make precomputations in relation to solving the linear systems
(A.16). The new eigenvector approximation is given by vk+1 = (vk−∆vk)/ ‖vk −∆vk‖.
The Resinv procedure is summarized in Algorithm A.1.

Algorithm A.1: Resinv
input : Initial guess of the eigenpair (γ0, v0) ∈ C× Cnxnz+2nz , with ‖v0‖ = 1
output: An approximation (γ, v) ∈ C×Cnxnz+2nz of (γ∗, v∗) ∈ C×Cnxnz+2nz

1 σ ← γ0

2 for k = 0, 1, 2, . . . do
3 Compute new approximation of γk+1 from (A.14)
4 Compute the residual rk from (A.15)
5 Compute the correction ∆vk from (A.16)
6 vk+1 ← (vk −∆vk)/‖vk −∆vk‖
7 γ ← γk, v ← vk

Large parts of the computational effort in Algorithm A.1 often consists of the solving
of the linear system (A.16) and we present a method that makes the computation feasible
for large-scale problems. We use the Schur complement of M(σ) with respect to the block
P (σ),

S(σ) := Q(σ)− C1P (σ)−1CT2 , (A.17)

to specialize the computation of (A.16) for the WEP. The specialization, which is a di-
rect consequence of the block saddle-point structure in (A.8), is an important step in our
algorithm and therefore we present it in the following form.

Proposition A.2.2 (Schur complement for the WEP). Let M(σ) be as in (A.8), the shift
σ ∈ C, and let S(σ) be the Schur complement (A.17). Moreover, let r ∈ Cnxnz+2nz , and
let rint be the first nxnz elements of r and rext be the last 2nz elements of r. Then

M(σ)−1r =

[
q

P (σ)−1
(
−CT2 q + rext

)] (A.18)

where

q := S(σ)−1r̃ (A.19)

and

r̃ := rint − C1P (σ)−1rext. (A.20)
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We use Proposition A.2.2 to solve the linear system in Step 5 in Algorithm A.1. More
precisely, we use a preconditioned iterative method to solve (A.19), and the FFT to com-
pute the action P (σ)−1 (as described in Remark A.2.1). All other operations required for
the application of Proposition A.2.2 have negligible computational cost.

A.3 Matrix equation characterization

In order to construct a good preconditioner for the linear system (A.19) we now formulate
it as a matrix equation. Without loss of generality we express (A.19) as S(σ)vec(X) =
vec(C), where X,C ∈ Cnz×nx .

Note that S(σ) is defined in (A.17) as the sum of Q(σ) and −C1P (σ)−1CT2 , where
Q(σ) is described by (A.9). The action ofQ(σ) can be characterized with matrix equations.
By direct application of rules for Kronecker products, see e.g., [17, Section 4.3], it follows
that

Q(σ)vec(X) = vec
(
(Dzz + 2σDz + σ2Inz )X +XDxx +K ◦X

)
. (A.21)

The action of the first two terms of (A.21) can be identified with a Sylvester operator,
L : Cnz×nx → Cnz×nx :

L (X) := AX +XB, (A.22)

and hence the action ofQ(σ) can be viewed as a generalized Sylvester operator. The action
corresponding to S(σ) can similarly also be constructed as a generalization of the Sylvester
operator. We formalize it in the following result, where we also introduce an additional free
parameter k̄. This parameter is later chosen in such a way that the contribution of the terms
corresponding to the Sylvester operator is as large as possible.

Proposition A.3.1 (Waveguide matrix equation). Let X ∈ Cnz×nx , let C ∈ Cnz×nx be a
given matrix, and let S(σ) be the Schur complement (A.17). Then vec(X) is a solution to
S(σ)vec(X) = vec(C) if and only if X is a solution to

AX +XB + (K − k̄11T ) ◦X − P−(σ)−1XE − P+(σ)−1XJnx
EJnx

= C, (A.23)

where A := Dzz + 2σDz +σ2Inz
+ k̄Inz

, and B := Dxx, and E := 1
h2
x

(d1e1 + d2e2)eT1 ,
d1and d2 are given by the discretization, Jnx

is the flipped identity as defined in the intro-
duction, and k̄ is a free parameter.

Proof. We have that S(σ) = Q(σ) − C1P (σ)−1CT2 . The equivalent matrix equation
formulation for Q(σ) is found apparent from (A.21). The conclusion follows from the
calculation

C1P (σ)−1CT2

=
1

h2
x

[
e1 ⊗ Inz

enx
⊗ Inz

][P−(σ)−1 0
0 P+(σ)−1

][
d1e

T
1 ⊗ Inz + d2e

T
2 ⊗ Inz

d1e
T
nx
⊗ Inz

+ d2e
T
nx−1 ⊗ Inz

]
= e1

(
d1

h2
x

eT1 +
d2

h2
x

eT2

)
⊗ P−(σ)−1 + enx

(
d1

h2
x

eTnx
+
d2

h2
x

eTnx−1

)
⊗ P+(σ)−1,

and rules for Kronecker products [17, Section 4.3].
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A.4 The Sylvester SMW structure and application to the WEP

A.4.1 Sylvester-type SMW-structure

Our computational procedure is based on the explicit formula for the inverse of a matrix
with a low-rank correction, the Sherman–Morrison–Woodbury (SMW) formula [14, Equa-
tion (2.1.4)]. We use the formulation

(L+ UV T )−1c = L−1(c− UW−1V TL−1c) (A.24)

where U, V ∈ Cn×N and

W := I + V TL−1U ∈ CN×N . (A.25)

In order to apply the SMW-formula to equations of the form (A.23), we need a particular
matrix equation version of the SMW-formula. The adaption of SMW-formulas to matrix
equations has been examined previously in the literature [10, 22, 29]. Our formulation
is based on a specialization of [10, Lemma 3.1] that is set up to minimize the memory
requirements (as we further discuss in Remark A.4.2).

We select the L-matrix in (A.24) as the vectorization of a Sylvester operator (A.22),
which is invertible if eig(A) ∩ eig(−B) = ∅, see e.g., [17, Theorem 4.4.6]. We make this
specific choice since the solution to the Sylvester equation in our case can be computed
efficiently. More precisely, the specific structure present in our context can be exploited,
as we further describe in Section A.5.3.

In our approach we consider a rank N correction of the Sylvester operator, which can
be expressed as a linear operator Π of the form

Π(X) :=

N∑
k=1

W k(X)Ek. (A.26)

In this setting the matrix W in (A.25) can be expressed in terms of evaluations of the func-
tionals W 1, . . . ,W N . This use of the SMW-result is formalized in the following result.

Theorem A.4.1 (Sylvester-type SMW-structure). Let A ∈ Cn×n, B ∈ Cm×m, and C ∈
Cn×m and suppose eig(A) ∩ eig(−B) = ∅. Moreover, let the matrices Ek ∈ Cn×m
and linear functionals W k : Cn×m → C be given for k = 1, 2, . . . , N and define Π :
Cn×m → Cn×m by (A.26). Assume that there exists a unique solution to the equation

L (X) + Π(X) = C. (A.27)

where L is the Sylvester operator defined analogous to (A.22). Moreover, let

G := L −1(C), and (A.28a)
Fk := L −1(Ek) for k = 1, 2, . . . , N, (A.28b)
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and define

W :=


1 + W 1(F1) W 1(F2) . . . W 1(FN )

W 2(F1) 1 + W 2(F2) . . . W 2(FN )
...

...
. . .

...
W N (F1) W N (F2) . . . 1 + W N (FN )

 , g :=


W 1(G)
W 2(G)

...
W N (G)

 .
(A.29)

Then the solution to (A.27) is given by

X = L −1

(
C −

N∑
k=1

αkEk

)
, (A.30)

where aT =
[
α1, . . . , αN

]
is the unique solution to the system of equations

Wa = g. (A.31)

Proof. In order to invoke [10, Lemma 3.1] we note that the linear functionals W k can be
parametrized as W k(X) = vec (Wk)

T
vec(X), for Wk ∈ Cn×m. Moreover, if we define

the matrices P1 := [vec(E1), . . . , vec(EN )] and P2 := [vec(W1), . . . , vec(WN )]T , then
the conclusion (A.30)–(A.31) follows from direct reformulation of [10, Equation (6)].

Remark A.4.2 (Variants of Theorem A.4.1). Note that, due to the linearity of L −1, the
solution in (A.30) can be equivalently expressed as

X = G−
N∑
k=1

αkFk. (A.32)

Moreover, since G,F1, . . . , FN can be treated as known, X can be computed directly from
(A.32) without the action of L −1. Hence, an approach based on (A.32) requires less
computational effort than an approach based on (A.30) in general. However, in our case,
(A.32) is not advantageous since it requires more memory resources as we further discuss
in Section A.5.2.

A.4.2 SMW-structure approximation of the waveguide matrix equation

We saw in the previous section that the matrix equation SMW-formula can be applied
to sums of a Sylvester operator L and the operator Π in (A.26). Note that any linear
matrix-operator Φ(X) can be expressed in the form (A.26), by selecting the functionals
as W k(X) = eTj Xe` and the matrices Ek = Φ(eje

T
` ), where j = 1, . . . , n, and ` =

1, . . . ,m, and k = j + (`− 1)n such that k ∈ {1, . . . , nm} and N = nm. Unfortunately,
such a construction is not practical since Theorem A.4.1 is not computationally attractive
for large values of N .

Particularly for our problem, equation (A.23) can be efficiently solved if the last terms
in (A.23), i.e.,

Φ(X) := (K − k̄11T ) ◦X − P−(σ)−1XE − P+(σ)−1XJEJ, (A.33)
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can be expressed as a low-rank operator Π of the form (A.26). Then the solution to (A.23)
can be directly computed with Theorem A.4.1. In general, Φ can only be expressed as an
operator Π of large rank N . Nevertheless, the ranks of the last two operators in (A.33) are
bounded by 2nz respectively, since E only has two nonzero elements. Moreover, the first
term in (A.33) has low rank for instance if the elements of K equals a constant, k̄, except
for a few indices. In the continuous formulation, this corresponds to the wavenumber being
constant in most parts of the domain.

Although Φ is in general not a low-rank operator and can therefore only be expressed
in the form of (A.26) with a large N , we now introduce a low-rank approximation of Φ,
called Π, with N � nxnz . Our construction exploits the structure in Φ and allows for a
representation of Π with both low rank N and structured matrices Ek.

The construction of Π is based on a Galerkin approximation of the solution X . More
specifically we consider approximations in a vector space V ⊂ Cnz×nx , with a basis
V1, . . . , VN , which is assumed to be orthogonal with respect to the trace inner product
〈X,Y 〉 = Tr(Y HX). We take the approximation of X ∈ Cnz×nx from this space and let
X̃ ∈ V be the best approximation (in the induced trace norm). Equivalently we can impose
the Galerkin condition on X ,

〈X − X̃, Vk〉 = 0, for k = 1, . . . , N,

which leads to the formula X̃ :=
∑N
k=1

〈X,Vk〉
〈Vk,Vk〉Vk. Based on this approximation, we

construct Π as an approximation of Φ by setting Π(X) := Φ(X̃), i.e.,

Π(X) := Φ

(
N∑
k=1

〈X,Vk〉
〈Vk, Vk〉

Vk

)
=

N∑
k=1

〈X,Vk〉
〈Vk, Vk〉

Φ(Vk).

If we define W k(X) := 〈X,Vk〉
〈Vk,Vk〉 and Ek := Φ(Vk), then Π is of the form (A.26). More

precisely, for our structure in the WEP, (A.33), we have

Ek := (K − k̄11T ) ◦ Vk − P−(σ)−1VkE − P+(σ)−1VkJEJ. (A.34)

As can be expected from a Galerkin approach, the approximation is exact for any X ∈ V ,
since by construction Φ(Vk) = Π(Vk), k = 1, . . . , N .

In theory, the construction can be done for any appropriate vector space. For reasons
of structure exploitation, we select Vk, k = 1, . . . , N , as indicator functions in rectangular
regions, as shown in Figure A.2. We then select Nx and Nz intervals in x- and z-direction
respectively, hence N = NxNz . In this case the matrices Vp+(q−1)Nz

, p = 1, . . . , Nz and
q = 1, . . . , Nx, take the value 1 in the corresponding rectangular region and zero outside,
and W p+(q−1)Nz

is the functional taking the mean over that region. More precisely,

[Vp+(q−1)Nz
]r,s =

{
1 if the point (r, s) belongs to the region (p, q)

0 otherwise

W p+(q−1)Nz
(X) =

∑
r,s[X ◦ Vp+(q−1)Nz

]r,s∑
r,s[Vp+(q−1)Nz

]r,s
.

(A.35)
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Figure A.2: The fine grid in the figure is an illustration of the grid on which we discretize
the PDE, and the coarse grid shows the regions in which we take basis vectors Vk as
constant. In this example the weight matrix V3+(4−1)Nz

will have value 1 for (k, `) in
the light gray area and 0 on all other elements. Note that the coarse grid for the SMW
approximation is finer towards the boundaries in x-direction. This is done in order to
better capture the effect of the DtN-maps.

Note that the grid resolution in Figure A.2 is finer near the boundary. This is done in
order to improve the approximation of the DtN-maps, which are localized in the boundary
region. The localization can be seen in the structure of the E-matrix in Proposition A.3.1,
specifically by noting that the two boundary terms in (A.23) only depend on the first and
last two columns of X . More precisely, E stems from a one-sided, second-order, finite-
difference approximation of the derivative in (A.1d) at x−, i.e.,

ux(x0, z`) ≈ d0u(x0, z`) + d1u(x1, z`) + d2u(x2, z`), (A.36)

for ` = 1, . . . , nz . However, the approximation generated by the Galerkin approach with
basis as in (A.35) and a uniform grid (without grid refinement at the boundary) would
result in the approximation

ux(x0, z`) ≈ d0u(x0, z`) +
(d1 + d2)

Nx

Nx∑
k=1

u(xk, z`), (A.37)

where Nx is the number of discretization points, in x-direction, contained in the region
at the boundary (Nx = nx/Nx for a uniform grid). Equation (A.37) is not an accurate
derivative approximation, and the grid refinement is added to capture the approximation
(A.36). Note that in both cases, (A.36) and (A.37), the Galerkin approach with basis (A.35)
would average the approximations in z-direction. The reasoning is analogous for (A.1e) at
x+. Hence, the boundary refinement as shown in Figure A.2 is not primarily to improve
the approximation of X with X̃ ∈ V , but rather to improve the approximation properties
of the operator. The choice of grid refinement is supported by computational experiments
presented in Section A.6.
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Remark A.4.3 (Other approximations). Note that the approximation described above is
only an illustration of an approximation procedure and there exist many variations. Our
construction can be interpreted as a low-rank approximation with operator composition
Π = ΦP , where P is a linear low-rank operator. We use a Galerkin type approach where
P is a projection onto the space V . Although we have used a specific Galerkin space V and
basis functions (with exploitable structure for this problem) others can also be used. An-
other option is to use a truncated SVD-based approach, e.g., similar to the rank-revealing
procedure proposed in [10, Algorithm 3.2]. Such an approach would aim to give a good
approximation of the operator for all X ∈ Cnz×nx . In contrast to this our approach is de-
signed for a specific class of X , namely those which are smooth in the sense that they can
be approximated by the discretization of a piecewise constant function, i.e., X ≈ X̃ ∈ V .
Further options are to use smoothing as, e.g., in multi-grid methods and other domain
decomposition methods [12]. In order to use these approaches in the framework here de-
scribed, further focused research would be required. In our setting, the structure of (A.34)
allows us to reduce the memory requirements as we describe in the next section.

A.5 Structure exploitation and specialization of Resinv

A.5.1 SMW-preconditioned Resinv

The application of Resinv to the WEP, described in Section A.2.3, requires an efficient
solution to the linear system M(σ)−1r in equation (A.16). Since we want to solve this
linear system iteratively, we need an effective preconditioner. We use the approximation
technique presented in Section A.4.2 as a preconditioner. As a consequence of the fact
that the shift is kept constant in Resinv, the Sylvester operator defined in (A.22), with
A := Dzz+2σDz+σ2Inz

+ k̄Inz
andB := Dxx, is also constant. Therefore the matrices

F1, . . . , FN in (A.28b) and the W -matrix in (A.29) are constant throughout the whole
procedure. Hence, the W -matrix can be precomputed before initiating Resinv. Moreover,
as mentioned in Remark A.4.2, this formulation of the SMW-formula, does not require the
storage of the matrices F1, . . . , FN , onceW has been computed. In fact only one F -matrix
needs to be stored at a time, since the columns of W can be computed column-wise. The
precomputation can also be trivially parallelized since the columns of W are independent.
This construction is summarized in Algorithm A.2.

An important feature of the algorithm is that N can be treated as a parameter. Using
a large N implies more computational work in the precomputation phase, i.e., Steps 2–
5 of Algorithm A.2, since many Sylvester equations need to be solved. However, the
quality of the preconditioner is better and we expect the iterative method to convergence in
fewer iterations for large N . More precisely, less computation is required for the iterative
solves1 in Step 10. Hence, N parameterizes a trade-off between computation time in the
initialization and in the iterative solves. As is illustrated in Section A.6, the best choice of
N in terms of total computation time is a nontrivial problem, although many choices of N
lead to a competitive algorithm.

1This holds only if N � nxnz as computation of (A.31) otherwise is a substantial part of Step 10.
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Algorithm A.2: Resinv for WEP with preconditioned Schur reformulation

input : Initial guess of the eigenpair (γ0, v0) ∈ C× Cnxnz+2nz , with ‖v0‖ = 1
output: An approximation (γ, v) ∈ C×Cnxnz+2nz of (γ∗, v∗) ∈ C×Cnxnz+2nz

1 σ ← γ0

2 for k = 1, 2, . . . , N do
3 Compute Fk from (A.28b) with Ek from (A.34)
4 Compute the kth column of W as described in (A.29)

5 LU-factorize W
6 for k = 0, 1, 2, . . . do
7 Compute new approximation of γk+1 from (A.14)
8 Compute the residual rk from (A.15)
9 Compute r̃k from rk with (A.20), using the sparsity of C1 and the structure of

P (σ)−1 according to Remark A.2.1
10 Compute q from the linear system (A.19) with a preconditioned iterative

solver, where the preconditioner is applied to a vector c as:
• Set C such that vec(C) = c and compute G from (A.28a). Use G to

compute g from (A.29)

• Compute {αk}Nk=1 by solving the linear system (A.31) with the pre-
factorized matrix W

• Form the right-hand side of (A.30) and solve the Sylvester equa-
tion.Vectorize the solution matrix X

11 Compute the correction ∆vk from q using (A.18)
12 vk+1 ← (vk −∆vk)/‖vk −∆vk‖
13 γ ← γk, v ← vk

In order to further improve performance we use a result regarding residual inverse iter-
ation in [37]. More precisely, [37, Theorem 9] states that the linear solves in Resinv can be
terminated in a way that preserves the property that the convergence factor is proportional
to the shift–eigenvalue distance. It is proposed to use the tolerance τ satisfying

‖M(γk+1)vk −M(σ)∆vk‖ ≤ τ‖M(γk+1)vk‖ (A.38)

and τ = O(|γ∗ − σ|). Although we solve the linear system (A.19) inexactly, the error
propagates linearly to (A.18), and hence the tolerance (A.38) is natural also in our setting.

A.5.2 Storage improvements

The particular choice of SMW-formulation is due to an observation in computational ex-
periments, that memory is a restricting aspect in our approach. We have therefore selected
the SMW-formulation in order to reduce memory requirement at the cost of an increased
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computation time. Our approach requires the computation of the solution to two Sylvester
equations per iteration, i.e, equation (A.28a) and (A.30). The solution X in (A.30) could
be computed by forming a linear combination of G,F1, . . . , FN , as in (A.32) but would
require the storage of F1, . . . , FN which are full matrices in general. In contrast to this,
the matrices E1, . . . , EN have a structure that can be exploited. More precisely, the matrix
C−

∑N
k=1 αkEk required in (A.30) can be computed efficiently by exploiting the structure

of Vk and Ek defined in (A.34), significantly reducing memory requirements.

A.5.3 Circulant structure exploitation for Sylvester equation

In order to use the suggested preconditioner we need to solve a number of Sylvester equa-
tions, with the Sylvester operator defined by (A.22). There are many methods available
in the literature, both direct methods such as the Bartels–Stewart algorithm [4] as well
as iterative methods. See [34] for a recent survey of available methods. However, our
Sylvester equation has a particular structure which can be exploited further. The approach
is based on the implicit diagonalization of the coefficient matrices, from which a closed
form expression is available. Consider the equation AX + XB = C where A and B are
diagonalizable. Then the solution X is given by

X = V YW−1, with [Y ]p,q =
[V −1CW ]p,q

[ΛA]p + [ΛB ]q
, (A.39)

where A = V ΛAV
−1, and B = WΛBW

−1. In the general case, the application of
(A.39) is expected to be expensive and numerically unstable. For the waveguide matrix
equation (A.23) the matrix A is circulant, as it stems from the discretization with periodic
boundary conditions. In particular it is diagonalized by the Fourier matrix whose action
can be computed by the FFT; the eigenvalues are also readily available in O(nz log(nz))
operations using the FFT [14, Theorem 4.8.2]. The other matrix B = Dxx is well studied
and has both known eigenvalues and eigenvectors, the action of the latter can be computed
in an efficient and stable way using the relation between Sine-/Cosine-transforms and the
FFT [11, Lemma 6.1] [14, Section 4.8]. The solution to the Sylvester operator in (A.22),
i.e.,

(Dzz + 2σDz + (σ2 + k̄)Inz )X +XDxx = C, (A.40)

can hence be computed by using (A.39) since the action of V , V −1, W , and W−1 can
be computed efficiently and accurately using the FFT, and the diagonals of ΛA and ΛB
are available. This exploitation of the FFT leads to a computation complexity that is
O(nxnz log(nxnz)) for the inversion of (A.40), cf. [11, Section 6.7].

A.6 Numerical simulations

In order to illustrate properties of our approach, we now show the result of simulations
carried out in MATLAB on a desktop computer.2 Source code for the simulations are pro-

2Intel quad-core i5-5250U CPU 1.60 GHz × 4, with 16 GB RAM using MATLAB 2015a.
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vided online to improve reproducibility.3 We use the waveguide illustrated in Figure A.1a,
and also described in [18, Section 5.2]. This waveguide has many eigenvalues, oscillatory
eigenfunctions, and a large discontinuity in the wavenumber, which is constructed to be
representative of a realistic situation. The free parameter in (A.23) is set to k̄ = mean(K).
Moreover, the size of the problem is denoted by n and defined as n := nxnz+2nz , and the
parametrization of the preconditioner, N , is defined by N := NxNz . For implementation
convenience we select nx = nz + 4 and Nx = Nz + 4.

We first illustrate the quality of the preconditioner (without incorporation into Resinv).
The relative error as function of GMRES-iteration is visualized in Figure A.3. We clearly
see that the required number of iterations decreases with N , which is expected since the
SMW-approximation error is smaller for larger N . Moreover, we see that a small N nor-
mally generates a long transient phase. The advantage of selecting a finer grid close to the
boundary, as shown in Figure A.2, is clear from the fact that the convergence in Figure A.3a
is faster than the convergence in Figure A.3b. In simulations with additional layers of grid
refinement close to the boundary (Nx = Nz + 8, and nx = nz + 8) no substantial increase
in convergence speed compared to Figure A.3a was observed.
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(a) Basis matrices Vk chosen as in Fig-
ure A.2, where Nx = Nz + 4.
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(b) Basis matrices Vk chosen in a uniform way (cf. Figure A.2).
Note that here nx = nz , and Nx = Nz .

Figure A.3: GMRES convergence for solving S(σ)x = c for different coarse grids in the
SMW-approximation. The discretization is nz = 945 and the error is measured as the
relative error compared to a reference solution xref, computed with the same methods but
to a higher accuracy.

Although no theoretical bounds on the eigenvalues are derived for the preconditioned
system, we provide numerical simulations of the eigenvalues of the preconditioned system
in Figure A.4. Since, due to the dimension of the problem, it is infeasible to compute all
eigenvalues, and since clustering is observed for medium size problems, we compute the
250 eigenvalues of largest magnitude of the preconditioned system shifted with −0.75I .

3URL: https://www.math.kth.se/~eringh/software/wep/wep_code
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The computation is done with eigs. As seen in Figure A.4, the eigenvalues exhibit a
higher degree of clustering when Nz is increased, which indicates faster convergence for
iterative methods.
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Figure A.4: Eigenvalues of the preconditioned systems for different parametrization Nz of
the coarse grids in the SMW-approximation. The dots in each plot are the 250 eigenvalues,
representing the outer part of the spectrum. The discretization is nz = 945, and the coarse
grid is chosen as in Figure A.2. Compare with convergence observed in Figure A.3a.

Algorithm A.2 is applied to this benchmark problem, and Figure A.5 shows the number
of required GMRES-iterations for one iteration of Resinv. As expected from the approx-
imation properties of the preconditioner, a larger value N implies fewer iterations. We
observe an increase in the number of required GMRES-iterations with increasing problem
size. The increase is however rather slow.
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Figure A.5: Illustration of the increase in GMRES iterations. Evaluations for parameter
values Nz ∈ {15, 21, 35, 45, 63}, where Nx = Nz + 4, and N = NxNz .

The trade-off between computation time in the initiation and in the linear solves is illus-
trated for different values of N in Figure A.6a. For this particular problem (and computing
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environment) the best choice is Nz = 35. Note however, that several other choices such as
Nz = 45 and Nz = 63 are almost as good. In the profiling illustration in Figure A.6b, we
see, as expected, that increasing N , shifts computational effort into to the precalculation
phase, and that the computational effort required for the precalculation and the other parts
of the algorithm are of the same order of magnitude.
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(SMW) W -matrix from (A.29).

Figure A.6: Time for the complete method described in Algorithm A.2, as a function of
problem size. Problem size is the total size of the problem as presented in (A.2), that is
nxnz + 2nz , where the GMRES-tolerance is select such that linear system is solved to full
precision. This is plotted for different N values N = NxNz , and Nx = Nz + 4.

For the WEP we measure the error of the approximation with an estimate of the relative
residual norm

R(v,γ) = (A.41)

‖M(γ)v‖2∑2
k=0 |γ|k‖Ak‖1 + ‖C1‖1 + ‖CT2 ‖1 + 2|d0|+

∑p
k=−p(|s+,k(γ)|+ |s−,k(γ)|)

analogous to estimates for other NEPs [23, 16]. Algorithm A.2 is applied with the GMRES-
termination criterion (A.38) set to τ = 10−3, and the error is visualized in Figure A.7a.
We use σ = −0.5 − 0.4i, such that the algorithm converges to the eigenvalue γ ≈
−0.523 − 0.375i. As expected from the GMRES-termination criterion (A.38), we main-
tain linear convergence and a convergence factor which is in the order of magnitude of
the shift–eigenvalue distance. The corresponding computed eigenfunction is visualized in
Figure A.7b. The computation time for different parameter values are given in Table A.1.
A comparison between Table A.1 and Figure A.6 shows that this affects the best choice of
Nz , since the termination criterion decreases the cost for the linear solves. The best per-
formance in terms of CPU-time is for these examples achieved when the precomputation
time is about 30% of the total computation time.
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Figure A.7: Illustration of convergence of Resinv and the corresponding eigenfunction to
eigenvalue γ ≈ −0.523− 0.375i. In this simulation we use the shift σ = −0.5− 0.4i, the
discretization nz = 2835, and the preconditioner parameter Nz = 21.

For very large problems, GMRES is not advantageous due to memory requirements.
Dealing with this using restarted GMRES was not successful due to long transient phases,
similar to those observed in Figure A.3. GMRES requires more memory than BiCGStab,
and the largest problem we manage to solve is computed with BiCGStab. However, GM-
RES was in general slightly faster in simulations with enough memory. For large problems
with GMRES, the size of the Krylov space needs to be carefully adjusted to stay within
the available RAM. For most simulations the maximum size of the Krylov space is 100
vectors, but for n ≈ 16 · 106 only 30 vectors is used for Nz = 35 and Nz = 21. How-
ever, for the case Nz = 15 no size of the Krylov subspace is found that is sufficiently
large to converge to the tolerance, but small enough to stay within the available RAM. We
compare our approach with GMRES combined with a preconditioner based on incomplete
LU-factorization (ILU) [31, Chapter 10]. Unfortunately, in our experiments ILU required
considerable memory resources and we were not able to use it to solve very large problems.

Remark A.6.1 (Recycling BiCGStab). We also test the recycling BiCGStab as described
in [1, Algorithm 2]. The invariant subspace is computed as the dominant 15 right eigenvec-
tors of the shifted preconditioned system.4 For a problem with nz = 945, we observe that
the number of iterations needed for convergence is 50, 28, and 16, for recycling BiCGStab;
and 79, 44, and 24 for BiCGStab; where Nz is 15, 21, and 35, respectively. Consequently,
recycling reduces the number of iterations needed. However, a direct usage of recycling
requires more memory, and for our class of large-scale problems, we have observed that
memory consumption is a limiting factor. Hence, using recycling BiCGStab partially de-
feats the purpose of changing from GMRES to BiCGStab, as in the discussion above.

4The computation is done with eigs. The shift is−0.75I (cf. Figure A.4). The bi-orthogonality is enforced
in the same way as described in [2, Section 4.3].
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GMRES BiCGStab ILU (GMRES)

n
Nz = 15 Nz = 21 Nz = 35 Nz = 15 Nz = 21 Nz = 35 ε = 10−5 ε = 10−6

101 115 63 53 79 85 66 91 78 74
278 775 201 169 241 324 216 246 504 474
898 695 542 405 509 757 520 570 − −

2 490 075 1 674 1 129 1 652 2 391 1 668 1 796 − −
4 875 255 3 530 2 435 3 218 4 653 3 199 3 276 − −
8 054 235 6 732 4 675 6 658 10 808 7 001 7 528 − −

16 793 595 − 11 171 17 116 23 047 14 865 15 983 − −

Table A.1: Illustration of CPU-time in seconds for a set of different methods, for different
values of the parameter Nz where N = NxNz and Nx = Nz + 4. The ILU-dropping
tolerance is denoted ε. The dash, i.e., −, denotes simulations which could not be executed
due to insufficient RAM.

Remark A.6.2 (Applicability to FEM-discretization). A FEM-discretization of this prob-
lem was presented in [18]. Our preconditioner can also be applied to solve the discretiza-
tion with FEM, by using the FD-preconditioner. The observed convergence is similar to
the previously observed convergence in the FD-case (cf. Figure A.3a). For instance, when
our method is applied to a discretization with nz = 945 the number of iterations needed
for convergence in GMRES is 67, 44, and 25 iterations for the FD-problem; and similarly
67, 44, and 25 for the FEM-problem; where Nz is 15, 21, and 35 respectively.

A.7 Concluding remarks and outlook

We have presented a new computational procedure specialized for the WEP (A.1), based on
combining the method for NEPs called Resinv and an iterative method for linear systems.
The preconditioner for the iterative method is based on an approximation leading to a
structure which can be exploited with a matrix-equation version of SMW.

There are many options for constructing the SMW approximation. For instance, the
space used in the Galerkin approximation could be selected in a number of ways. Such a
construction would necessarily need to use sparsity or other matrix structures in order to
solve large-scale problems.

We have focused on one particular method for NEPs: Resinv. One of the crucial fea-
tures is that a linear system corresponding to M(σ) needs to be solved many times (for a
constant shift). The Resinv method is not the only method that uses the solution to many
linear systems with a fixed shift. This is also the case for the nonlinear Arnoldi method
[40] and the tensor infinite Arnoldi method [18]. However, inexact solves in Arnoldi-type
methods are sometimes problematic [35], and further research would be required in order
to reliably and efficiently use our preconditioner for these methods.

Although our approximation is justified with a Galerkin approach, we have not pro-
vided any theoretical convergence analysis. The application of standard proof-techniques
for such an analysis, e.g., involving eigenvalues and spectral condition numbers have not
led to a clear characterization of the error. Therefore, we believe that a convergence anal-
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ysis would require use of the regularity of the eigenfunction, similar to what is used in
multi-grid methods [12], which is certainly beyond the scope of this paper.

Finally, we wish to point out that several results in this paper may be of interest also
for other problems and other NEPs, e.g., [13]. As mentioned in the introduction, the
matrix-equation approach has been used for PDEs on a rectangular domains that are dis-
cretized on uniform grids [26, 36, 9, 28]. These techniques lead to problems on the form
L (X) + Φ(X) = C, in which case the SMW-Galerkin approach presented could be natu-
ral to try as a preconditioner to the corresponding linear system. Furthermore, many NEPs
arise naturally from PDEs with artificial boundary conditions. Most artificial boundary
conditions has freedom regarding selection of boundary. We can therefore select a rectan-
gular domain, i.e., similar to the framework considered in this paper.
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Abstract

We consider generalizations of the Sylvester matrix equation, consisting of the sum of
a Sylvester operator and a linear operator Π with a particular structure. More precisely,
the commutator of the matrix coefficients of the operator Π and the Sylvester operator
coefficients are assumed to be matrices with low rank. We show (under certain addi-
tional conditions) low-rank approximability of this problem, i.e., the solution to this
matrix equation can be approximated with a low-rank matrix. Projection methods have
successfully been used to solve other matrix equations with low-rank approximability.
We propose a new projection method for this class of matrix equations. The choice
of subspace is a crucial ingredient for any projection method for matrix equations.
Our method is based on an adaption and extension of the extended Krylov subspace
method for Sylvester equations. A constructive choice of the starting vector/block is
derived from the low-rank commutators. We illustrate the effectiveness of our method
by solving large-scale matrix equations arising from applications in control theory and
the discretization of PDEs. The advantages of our approach in comparison to other
methods are also illustrated.

Keywords: Generalized Sylvester equation, low-rank commutation, extended Krylov sub-
space, iterative solvers, matrix equation.

B.1 Introduction

Let L : Rn×n → Rn×n denote the Sylvester operator associated with the matricesA,B ∈
Rn×n, i.e.,

L (X) := AX +XBT , (B.1)
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and let Π : Rn×n → Rn×n denote the matrix operator defined by

Π(X) :=
m∑
i=1

NiXM
T
i , (B.2)

where m � n. The matrices A and B are assumed to be large, sparse, and nonsingular,
the operator L is assumed to be invertible, i.e., the spectra of A and −B are disjoint [40,
Section 7.2]. Given C1, C2 ∈ Rn×r with r � n, our paper concerns the problem of
computing X ∈ Rn×n such that

L (X) + Π(X) = C1C
T
2 . (B.3)

This equation is sometimes (e.g. [9]) referred to as the generalized Sylvester equation.
Let com(A,B) := AB − BA denote the commutator of two matrices. The structure

of the operator Π is assumed to be such that the commutator of the Sylvester coefficients
and the coefficients defining the operator Π have low rank. In other words, we assume that
there exist Ui, Ũi ∈ Rn×si and Qi, Q̃i ∈ Rn×ti such that si, ti � n and the commutators
fulfill

com(A,Ni) = ANi −NiA = UiŨ
T
i , (B.4a)

com(B,Mi) = BMi −MiB = QiQ̃
T
i , (B.4b)

for i = 1, . . . ,m. The property (B.4), which we refer to as low-rank commutation, is in
this framework a generalization of the concept of commuting matrices. The case of pure
commutation, i.e., when the right-hand side of (B.4) is zero, which occurs for instance
when Ni = fi(A),Mi = gi(B) where fi, gi are polynomials or analytic functions, is
analyzed in [30] and [8].

A recent successful method class for matrix equations defined by large and sparse ma-
trices, are based on projection, typically called projection methods [39, 17, 8]. We propose
a new projection method for (B.3) under the low-rank commutation assumption (B.4).

Projection methods are typically derived from an assumption on the decay of the sin-
gular values of the solution. More precisely, a necessary condition for the successful ap-
plication of a projection method is low-rank approximability, i.e., the solution can be ap-
proximated by a low-rank matrix. We characterize the low-rank approximability of the
solution to (B.3) under the condition that the Sylvester operator L has a low-rank ap-
proximability property and that ρ(L -1 Π) < 1. The low-rank approximability theory is
presented in Section B.2. The function ρ(·) denotes the (operator) spectral radius, i.e.,
ρ(L ) := sup{|λ| |λ ∈ σ(L )}, where σ(·) is the set of eigenvalues.

The choice of the subspace is an important ingredient in any projection method. We
propose a particular choice of projection spaces by identifying certain features of the solu-
tion to (B.3) based on our characterization of low-rank approximability and the low-rank
commutation properties (B.4). More precisely we use an extended Krylov subspace with an
appropriate choice of the starting block. We present and analyze an expansion of the frame-
work of the extended Krylov subspace method for Sylvester equation (K-PIK) [39, 15] to
the generalized Sylvester equation (Section B.3).
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Linear matrix equations of the form (B.3) arise in different applications. For example,
the generalized Lyapunov equation, which corresponds to the special case where B = A,
Mi = Ni and C1 = C2, arises in model order reduction of bilinear and stochastic systems,
see e.g. [9, 16, 8] and references therein. Many problems arising from the discretization
of PDEs can be formulated as generalized Sylvester equations [37, 35, 33]. Low-rank ap-
proximability for matrix equations has been investigated in different settings: for Sylvester
equations [22, 1, 21], generalized Lyapunov equations with low-rank correction [8] and
more in general for linear systems with tensor product structure [29, 21].

The so-called low-rank methods, which projection methods belong to, directly com-
pute a low-rank approximation to the solution of (B.3). Many algorithms have been de-
veloped for the Sylvester equation: projection methods [39, 17], low-rank ADI [11, 10],
sign function method [4, 5], Riemannian optimization methods [28, 42] and many more.
See the thorough presentation in [40]. For large-scale generalized Sylvester equations,
fewer numerical methods are available in the literature. Moreover, they are often designed
only for solving the generalized Lyapunov equation although they may be adapted to solve
the generalized Sylvester equation. In [8], the authors propose a bilinear ADI (BilADI)
method which naturally extends the low-rank ADI algorithm for standard Lyapunov prob-
lems to generalized Lyapunov equations. A non-stationary iterative method is derived in
[38], and in [27] a greedy low-rank technique is presented. In principle, it is always possi-
ble to consider the n2 × n2 linear system which stems from equation (B.3) by Kronecker
transformations. There are specific methods for solving linear systems with tensor product
structure, see [27, 28, 2] and references therein. These problems can also be solved em-
ploying one of the many methods for linear systems presented in the literature. In particu-
lar, matrix-equation oriented versions of iterative methods for linear systems, together with
preconditioning techniques, are present in literature. See, e.g., [8, Section 5], [14, 29, 31].
To our knowledge, the low-rank commutativity properties (B.4) have not been considered
in the literature in the context of methods for matrix equations.

The paper is structured as follows: In Section B.2 we use a Neumann series (cf.
[19, 30, 36, 44]) with hypothesis ρ(L -1 Π) < 1 to characterize the low-rank approx-
imability of the solution to (B.3). In Section B.3 we further characterize approximation
properties of the solution to (B.3) by exploiting the low-rank commutation feature of the
coefficients (B.4). We use this characterization in the derivation of an effective projection
space. In Section B.3.4 we present an efficient procedure for solving small-scale general-
ized Sylvester equations (B.3). Numerical examples that illustrate the effectiveness of our
strategy are reported in Section B.4. Our conclusions are given in Section B.5.

We use the following notation. The vectorization vec(A) is the vector obtained by
stacking the columns of the matrix A on top of one another. We denote by ‖ · ‖F the
Frobenius norm, whereas ‖ · ‖ is any submultiplicative matrix norm. Moreover, ‖L ‖ :=
sup‖A‖=1 ‖L (A)‖, for a generic linear and continuous operator L : Rn×n → Rn×n.
The identity and the zero matrices are respectively denoted by I and O. We denote by ei
the ith vector of the canonical basis of Rn while ⊗ corresponds to the Kronecker product.
The matrix obtained by stacking the matrices A1, . . . , An next to each other is denoted by[
A1, . . . , An

]
. Lastly, range(A) is the vector space generated by the columns of the matrix

A and span(A) is the vector space generated by the vectors in the set A.
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B.2 Representation and approximation of the solution

B.2.1 Representation as Neumann series expansion

The following theorem gives sufficient conditions for the existence of a representation of
the solution to a generalized Sylvester equation (B.3) as a convergent series. This will
be needed for the low-rank approximability characterization in the following section, as
well as in the derivation of a method for small generalized Sylvester equations (further
described in Section B.3.4).

Theorem B.2.1 (Solution as a Neumann series). Let L ,Π : Rn×n → Rn×n be linear
operators such that L is invertible, ρ(L −1 Π) < 1 and let C ∈ Rn×n. The unique
solution of the equation L (X) + Π(X) = C can be represented as

X =
∞∑
j=0

Yj , (B.5)

where {
Y0 := L −1 (C) ,

Yj+1 := −L −1 (Π (Yj)) , j ≥ 0.
(B.6)

Proof. By using the invertibility of L we have X = (I+L -1 Π)−1 L -1(C) and with the
assumption ρ(L −1 Π) < 1 we can express the operator (I + L −1 Π)−1 as a convergent
Neumann series (for operators as, e.g., in [26, Example 4.5]). In particular, we obtain

X =

∞∑
j=0

(−1)j
(
L −1 Π

)j
L −1 (C) .

The relation (B.5) follows by defining Yj := (−1)j
(
L −1 Π

)j
L −1 (C). By induction it

follows that the relations (B.6) are fulfilled.

Remark B.2.2. Theorem B.2.1 can be used to construct an approximation to the solution
of L (X) + Π(X) = C by truncating the series (B.5) analogous to the general form in
[26, (4.23)]. In particular, let

X(`) :=
∑̀
j=0

Yj , (B.7)

where Yj are given by (B.6). The truncation error can be bounded as follows:

‖X −X(`)‖ ≤ ‖L -1(C)‖ ρ(L −1 Π)`+1

1− ρ(L −1 Π)
.
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If L and Π are respectively the operators (B.1) and (B.2) that define the generalized
Sylvester equation (B.3), then the truncated Neumann series (B.7) can be efficiently com-
puted for small scale problems. In particular, this approach can be used in the derivation of
a numerical method for solving small scale generalized Sylvester equations as illustrated
in Section B.3.4.

B.2.2 Low-rank approximability

We now use the result in the previous section to show that the solution to (B.3) can be often
approximated by a low-rank matrix. We base the reasoning on low-rank approximability
properties of L . Our result requires the explicit use of certain conditions on the spectrum
of matrix coefficients of L . Under these specific conditions, the solution to a Sylvester
equation with low-rank right-hand side can be approximated by a low-rank matrix, see
[40, Section 4.1]. In this sense, we can extend several results concerning the low-rank
approximability of the solution to Sylvester equations to the case of generalized Sylvester
equations under the assumption ρ(L -1 Π) < 1. More precisely, the truncated Neumann
series (B.7) is obtained by summing the solutions to the Sylvester equations (B.6). Note
that, under the low-rank approximability assumption of L , the right-hand sides of the
Sylvester equations (B.6) are low-rank matrices since we assume that C is a low-rank
matrix and m� n. We formalize this argument and present a new characterization of the
low-rank approximability of the solution to (B.3) by adapting one of the most commonly
used low-rank approximability result for Sylvester equations [21].

We now briefly recall some results presented in [21], for our purposes. Suppose that
the matrix coefficients representing L are such that σ(A) ∪ σ(B) ⊂ C−. Let M ∈ Cn×n
be such that σ(M) ⊂ C−, then its inverse can be expressed as M−1 =

∫∞
0

exp(tM)dt.
The integral can be approximated with the following quadrature formula

M−1 =

∫ ∞
0

exp(tM)dt ≈
k∑

j=−k
wj exp(tjM), (B.8)

where the weights wj and nodes tj are given in [21, Lemma 5]. More precisely, we have
an explicit formula for the approximation error∥∥∥∥∥∥

∫ ∞
0

exp(tM)dt−
k∑

j=−k
wj exp(tjM)

∥∥∥∥∥∥ ≤ Ke−π
√
k, (B.9)

where K is a constant that only depends on the spectrum of M . The solution to the
Sylvester equation L (X) = C can be explicitly expressed as vec(X) = (I ⊗ A + B ⊗
I)−1vec(C). The solution to this linear system can be approximated by using (B.8) and
approximating the inverse of I ⊗ A + B ⊗ I . Let L -1

k : Rn×n → Rn×n be the linear
operator such that L -1

k (C) corresponds to the approximation (B.8). More precisely, the
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operator L -1
k satisfies

vec(L -1
k (C)) =

k∑
j=−k

wj

(
exp(tjB)⊗ exp(tjA)

)
vec(C).

By using the properties of the Kronecker product, it can be explicitly expressed as

L -1
k (C) =

k∑
j=−k

wj exp(tjA)C exp(tjB
T ). (B.10)

In terms of operators, the error bound (B.9) is ‖L -1−L -1
k ‖ ≤ Ke−π

√
k. The result of

the above discussion is summarized in the following remark, which directly follows from
(B.10) or [21, Lemma 7], [8, Lemma 2].

Remark B.2.3. The solution to the Sylvester equation L (X) = C can be approximated
by X̄ = L -1

k (C) where ‖X−X̄‖ ≤ ‖C‖Ke−π
√
k, rank(X̄) ≤ (2k+1)r,K is a constant

that depends on the spectrum of L and r is the rank of C.

The following theorem concerns the low-rank approximability of the solution to (B.3).
More precisely, it provides a generalization of Remark B.2.3 to the case of generalized
Sylvester equations by using the Neumann series characterization in Theorem B.2.1.

Theorem B.2.4 (Low-rank approximability). Let L be the Sylvester operator (B.1), Π the
linear operator (B.2), C1, C2 ∈ Rn×r and k a positive integer. Let X(`) be the truncated
Neumann series (B.7). Then there exists a matrix X̄(`) such that

rank(X̄(`)) ≤ (2k + 1)r +
∑̀
j=1

(2k + 1)j+1mjr, (B.11)

and ∥∥∥X(`) − X̄(`)
∥∥∥ ≤ K̄e−π√k, (B.12)

where K̄ is a constant that does not depend on k and only depends on L and `.

Proof. Let L k be the operator (B.10) and consider the sequence{
Ȳ0 := L -1

k (C1C
T
2 ),

Ȳj+1 := −L -1
k (Π(Ȳj)), j ≥ 0.

(B.13)

Define β := ‖L -1 Π‖ and βk := ‖L -1
k Π‖. By using Remark B.2.3 we have

‖Yj+1 − Ȳj+1‖ ≤ ‖L -1(Π(Yj))−L -1(Π(Ȳj))‖+ ‖L -1(Π(Ȳj))−L -1
k (Π(Ȳj))‖

≤ β‖Yj − Ȳj‖+Ke−π
√
k‖Π‖‖Ȳj‖.
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From the above expression, a simple recursive argument shows that

‖Yj+1 − Ȳj+1‖ ≤ βj+1‖Y0 − Ȳ0‖+Ke−π
√
k‖Π‖

j∑
t=0

βj−t‖Ȳt‖. (B.14)

Using the submultiplicativity of the operator norm, we see that it holds that ‖Ȳj‖ =

‖L -1
k (Π(Ȳj−1))‖ ≤ βk‖Ȳj−1‖. In particular ‖Ȳj‖ ≤ βjk‖L -1

k ‖‖C1C
T
2 ‖, and therefore,

by using Remark B.2.3, from (B.14) it follows that

‖Yj+1 − Ȳj+1‖ ≤ ‖C1C
T
2 ‖K

(
βj+1 + ‖Π‖‖L -1

k ‖
j∑
t=0

βj−tβtk

)
e−π
√
k. (B.15)

Since L -1
k converges to L -1, and by using the continuity of the operators, we have that

‖L -1
k ‖ and βk are bounded by a constant independent of k. Therefore from (B.15) it

follows that there exists a constant Kj+1 independent of k such that ‖Yj+1 − Ȳj+1‖ ≤
Kj+1e

−π
√
k. The relation (B.12) follows by defining X̄(`) :=

∑`
j=0 Ȳj and observing

‖X(`) − X̄(`)‖ ≤
∑̀
j=0

‖Yj − Ȳj‖ ≤ e−π
√
k
∑̀
j=0

Kj = K̄e−π
√
k,

where K̄ :=
∑`
j=0Kj . The upper-bound (B.11) follows by Remark B.2.3 iteratively

applied to (B.13).

We want to point out that, although Theorem B.2.4 provides an explicit procedure for
constructing an approximation to the solution of (B.3), we later consider a different class
of methods. Theorem B.2.4 has only theoretical interest and it is used to motivate the
employment of low-rank methods in the solution of (B.3). Moreover, in the numerical
simulations (Section B.4), we have observed a decay in the singular values of the solution
to (B.3) that it is faster than the one predicted by Theorem B.2.4.

B.3 Structure exploiting Krylov methods

B.3.1 Extended Krylov subspace method

In this section we derive a method for (B.3) that belongs to the class called projection meth-
ods. We briefly summarize the adaption of the projection method approach in our setting.
Projection methods for matrix equations are iterative algorithms based on constructing two
sequences of nested subspaces of Rn, i.e., Kk−1 ⊂ Kk and Hk−1 ⊂ Hk. Justified by the
low-rank approximability of the solution, projection methods construct approximations (of
the solution to (B.3)) of the form

Xk = VkZkWT
k , (B.16)

131



PAPER B

where Vk andWk are matrices with orthonormal columns representing respectively an or-
thonormal basis ofKk andHk. Note that low-rank approximability (in the sense illustrated
in, e.g., Theorem B.2.4) is a necessary condition for the success of an approximation of the
type (B.16).

The matrix Zk can be obtained by imposing the Galerkin orthogonality condition,
namely the residual

Rk := AXk +XkB
T +

m∑
i=1

NiXkM
T
i − C1C

T
2 , (B.17)

is such that VTk RkWk = 0. This condition is equivalent to Zk satisfying the following
small and dense generalized Sylvester equation, usually referred to as the projected prob-
lem,

TkZk + ZkH
T
k +

m∑
i=1

Gk,iZkF
T
k,i = Ek,1E

T
k,2, (B.18)

where,

Tk := VTk AVk, Hk :=WT
k BWk, Ek,1 = VTk C1, Ek,2 =WT

k C2, (B.19a)

Gk,i := VTk NiVk, Fk,i :=WT
kMiWk, i = 1, . . . ,m. (B.19b)

The iterative procedure consists in expanding the spaces Kk and Hk until the norm of the
residual matrixRk (B.17) is sufficiently small.

A projection method is efficient only if the subspaces Kk andHk are selected in a way
that the projected matrix (B.16) is a good low-rank approximation to the solution without
the dimensions of the spaces being large. One of the most popular choices of subspace is
the extended Krylov subspace (although certainly not the only choice [24, 17]). Extended
Krylov subspaces form the basis of the method called Krylov-plus-inverted Krylov (K-
PIK) [39, 15]. For our purposes it is natural to define extended Krylov subspaces with
the notation of block Krylov subspaces, cf. [23, Section 6]. Given an invertible matrix
A ∈ Rn×n and C ∈ Rn×r, the extended block Krylov subspace can be defined as the
sum of two vector spaces, more precisely EB�k (A,C) := B�k (A,C) + B�k (A−1, A−1C),
where

B�k (A,C) := span
({
p(A)Cw | deg(p) ≤ k, w ∈ Rr×r

})
⊆ Cn×r,

denotes the block Krylov subspace, p ∈ R[x] is a polynomial, and deg(·) is the degree
function. This space can be also represented as

B�k (A,C) = Bk(A,C)× · · · × Bk(A,C)︸ ︷︷ ︸
r times

where Bk(A,C) := span ({p(A)Cw | deg(p) ≤ k, w ∈ Rr}) ⊆ Cn.
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The extended Krylov subspace method is a projection method where we have spaces
Kk = EBk(A, C̄1), Hk = EBk(B, C̄2); and C̄1, C̄2 are called the starting blocks, which
we will show how to select in our setting in Sections B.3.2 and B.3.3. The procedure
is summarized in Algorithm B.1 where the matrices L and R are the low-rank factors of
(B.16), i.e., they are such thatXk = LRT . Notice that, in the case of generalized Lyapunov
equations, the new blocks Vk and Wk are equal (hence also the basis matrices Vk andWk)
and Algorithm B.1 can be optimized accordingly.

Algorithm B.1: Extended Krylovsubspacemethodfor generalizedSylvestereqns.
input : Matrix coeff.: A,B,N1 . . . , Nm,M1, . . . ,Mm ∈ Rn×n , C1, C2 ∈ Rn×r

Starting blocks: C̄1 ∈ Rn×r̄1 and C̄2 ∈ Rn×r̄2
Maximum number of iterations: d

output: Low-rank factors: L,R

1 Set V1 = orth
([
C̄1, A

−1C̄1

])
, W2 = orth

([
C̄2, B

−1C̄2

])
, V0 =W0 = ∅

for k = 1, 2, . . . , d do
2 Vk =

[
Vk−1, Vk

]
andWk =

[
Wk−1,Wk

]
3 Compute Tk, Hk, Ek,1, Ek,2, Gk,i, Fk,i according to (B.19a)–(B.19b)
4 Solve the projected problem (B.18)
5 Compute ‖Rk‖F according to (B.21)

if ‖Rk‖F ≤ tol then
Break

6 Set V (1)
k : first r̄1 columns of Vk; Set V (2)

k : last r̄1 columns of Vk
7 Set W (1)

k : first r̄2 columns of Wk; Set W (2)
k : last r̄2 columns of Wk

8 V ′k+1 =
[
AV

(1)
k , A−1V

(2)
k

]
and W ′k+1 =

[
BW

(1)
k , B−1W

(2)
k

]
9 V̂k+1 ← block-orthogonalize V ′k+1 w.r.t. Vk

10 Ŵk+1 ← block-orthogonalize W ′k+1 w.r.t. Wk

11 Vk+1 = orth(V̂k+1) and Wk+1 = orth(Ŵk+1)

12 Compute the decomposition Zk = L̂R̂T

13 Return L = VkL̂ and R =WkR̂

Remark B.3.1. The output of Algorithm B.1 represents the factorization Xk = LRT .
Under the condition that ‖Rk‖ is small, Xk is an approximation of the solution to (B.3)
such that rank(Xk) ≤ 2 min(r̄1, r̄2)k, where r̄1 = rank(C̄1) and r̄2 = rank(C̄2). By
construction range(L) ⊆ EBk(A, C̄1) and range(R) ⊆ EBk(B, C̄2). As it has been
shown, e.g., in [39, 15], an orthonormal basis of EBk can computed by means of the
block Arnoldi procedure. Moreover, for the case of the Sylvester equation, i.e., m = 0,
Algorithm B.1 can be effectively applied with starting blocks C̄1 = C1 and C̄2 = C2.
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A breakdown in Algorithm B.1 may occur in two situations. During the generation of
the basis of the extended Krylov subspaces, (numerical) loss of orthogonality may occur
in Steps 9–11. This issue is present already for the Sylvester equation [39, 15] and we
refer to [23] for a presentation of safeguard strategies that may mitigate the problem. We
assume that the bases Vk andWk have full rank. The other situation where a breakdown
may occur is in Step 4. It may happen that the projected problem (B.18) is not solvable.
For the Sylvester equation the solvability of the projected problem is guaranteed by the
condition that the field of values of A and −B are disjoint [40, Section 4.4.1]. We extend
this result, which provides a way to verify the applicability of the method (without carrying
out the method). As illustrated in the following proposition, for the generalized Sylvester
equation we need an additional condition. Instead of using the field of values, it is natural
to phrase this condition in terms of the ratio field of values (defined in, e.g., [18]).

Proposition B.3.2. Consider the generalized Sylvester equation (B.3) and assume that the
field of values ofA and−B are disjoint, and that the ratio field of values of

∑m
i=1Mi⊗Ni

and B ⊗ I + I ⊗A, i.e.,

R

(
m∑
i=1

Mi ⊗Ni, B ⊗ I + I ⊗A

)
:=

{
yH (

∑m
i=1Mi ⊗Ni) y

yH (B ⊗ I + I ⊗A) y

∣∣∣∣ y ∈ Cn
2

\ {0}
}
,

is strictly contained in the open unit disk. Then the projected problem (B.18) has a unique
solution.

Proof. Let L proj(Z) := TkZ +ZHT
k and Πproj(Z) :=

∑m
i=1Gk,iZF

T
k,i. The projected

problem (B.18) is equivalently written as L proj(Zk) + Πproj(Zk) = Ek,1E
T
k,2. Since A

and −B have disjoint fields of values, L proj is invertible [40, Section 4.4.1]. From Theo-
rem B.2.1 we know that there exists a unique solutionZk to (B.18) if ρ

(
L −1

proj Πproj

)
< 1.

This condition is equivalent to |λ| < 1, where (λ, v) ∈ C × C(kr)2 \ {0} is any eigenpair
of the following generalized eigenvalue problem(

m∑
i=1

Fk,i ⊗Gk,i

)
v = λ(Hk ⊗ I + I ⊗ Tk)v. (B.20)

Using the properties of the Kronecker product, equation (B.20) can be written as

m∑
i=1

(WT
k ⊗V Tk ) (Mi ⊗Ni) (Wk ⊗ Vk) v = λ(WT

k ⊗V Tk ) (B ⊗ I + I ⊗A) (Wk ⊗ Vk) v.

By multiplying the above equation from the left with vH we have that

|λ| =
∣∣∣∣xH (

∑m
i=1Mi ⊗Ni)x

xH (B ⊗ I + I ⊗A)x

∣∣∣∣ , x := (Wk ⊗ Vk) v.

By using that R (
∑m
i=1Mi ⊗Ni, B ⊗ I + I ⊗A) is strictly contained in the open unit

disk we conclude that |λ| < 1.
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Observation B.3.3. The computation of the matrices Tk, Hk (Step 3) and the orthogonal-
ization of the new blocks Vk+1,Wk+1 (Steps 9–11) can be efficiently performed as in [39,
Section 3] where a modified Gram–Schmidt method is employed in the orthogonalization.
The matricesGk,i and Fk,i (Step 3) can be computed by extending the matricesGk−1,i and
Fk−1,i with a block-column and a block-row. Moreover, the matrix Xk is never explicitly
formed. In particular, the Frobenius norm of the residual (B.17) can be computed as

‖Rk‖2F = ‖τk+1(ek ⊗ I2r)TZk‖2F + ‖Zk(ek ⊗ I2r)ThTk+1‖2F . (B.21)

This follows by replacing in (B.17) the following Arnoldi-like relations [41, equation (4)]

AVk = VkTk + Vk+1τk+1(ek ⊗ I2r)T , BWk =WkHk +Wk+1hk+1(ek ⊗ I2r)T .

Remark B.3.4. Algorithm B.1 is a block method in the sense that it uses a block Arnoldi
procedure to generate the basis matrices Vk and Wk. The basis generated by Algo-
rithm B.1 can hence be interpreted in a block sense and related to the block Krylov spaces
EB�k (A, C̄1) and EB�k (B, C̄2), cf. [20, Section 2]. However, in the framework of pro-
jection methods for matrix equations, the span of the columns of Vk and Wk are often
considered as the projection spaces. Moreover, the columns of Vk and Wk are respec-
tively a basis for EBk(A, C̄1) and EBk(B, C̄2). In particular, each column of L and R
is respectively in the space EBk(A, C̄1) and EBk(B, C̄2). This is equivalently expressed
as range(L) ⊆ EBk(A, C̄1) and range(R) ⊆ EBk(B, C̄2). Therefore, in the following
analysis, we derive and use properties of the spaces EBk(A, C̄1) and EBk(B, C̄2).

B.3.2 Krylov subspace and low-rank commuting matrices

Algorithm B.1 is efficient only if the starting blocks C̄1 and C̄2 are low-rank matrices
and if the subspaces EBk(A, C̄1) and EBk(B, C̄2) have good approximation properties.
Our approach consists in applying Algorithm B.1 directly to the generalized Sylvester
equation (B.3). Therefore, we now derive certain approximation properties of the solution
to (B.3) that naturally suggest a proper choice of the starting blocks. The low-rank of the
starting blocks will rely on the low-rank commutation property of the coefficients (B.4).
Our reasoning can be described as follows:

• The solution to the generalized Sylvester equation (B.3) can be represented as a
converging Neumann series (B.5). By truncating this series, X(`) gives an approxi-
mation to the solution to (B.3), in the sense of Remark B.2.2.

• The coefficients of the Neumann series (B.6) satisfy a sequence of Sylvester equa-
tions, where for each Sylvester equation, the right-hand side depends on the solution
to the previous Sylvester equation. We consider approximate solutions to this se-
quence. More precisely, let Ỹj be the result of Algorithm B.1 (as in Remark B.3.1)
applied to each Sylvester equation (B.6).

• The matrix X̃(`) =
∑`
j=0 Ỹj , that can be viewed as an approximation to the solution

of (B.3), can be factorized as X̃(`) = LRT such that range(L) ⊆ EBk(A, C̄1)
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and range(R) ⊆ EBk(B, C̄2). We give a characterization and a procedure for
computing C̄1 and C̄2. One condition for these matrices to be low-rank concerns
the commutators (B.4) being low-rank. These two matrices will be used as starting
blocks in Algorithm B.1.

Although the above reasoning is based on solving a sequence of Sylvester equations, our
approach consists of applying Algorithm B.1, only one time, directly to the generalized
Sylvester equation (B.3).

We first need a technical result which shows that, if the commutator of two matrices
has low rank, then the corresponding commutator, where one matrix is taken to a given
power, has also low rank. The rank increases at most linearly with respect to the power of
the matrix. The precise statement is presented in the following lemma.

Lemma B.3.5. Suppose that A and N are matrices such that com(A,N) = UŨT . Then,

com(Aj , N) =

j−1∑
k=0

AkUŨTAj−k−1.

Proof. The proof is by induction. The basis of induction is trivially verified for j = 1.
Assume that the claim is valid for j, then the induction step follows by observing that

com(Aj+1, N) = Aj+1N −NAj+1 = AjUŨT + (AjN −NAj)A,

and applying the induction hypothesis on AjN −NAj .

As pointed out in Remark B.3.1, C1 and C2 are natural starting blocks for the Sylvester
equation. If we apply this result to the sequence of Sylvester equations in Theorem B.2.1,
with L and Π defined as (B.1)–(B.2), we obtain subspaces with a particular structure.
For example, the approximation L0R

T
0 to Y0 provided by Algorithm B.1 is such that

range(L0) ⊆ EBk(A,C1) and range(R0) ⊆ EBk(B,C2). Since Y0 is contained in
the right-hand side of the definition of Y1, in order to compute an approximation of Y1, we
should consider the subspaces Ni · EBk(A,C1) and Mi · EBk(B,C2) for i = 1, . . . ,m.
By using the low-rank commutation property (B.4) such subspaces can be characterized
by the following result.

Theorem B.3.6. Assume that A ∈ Rn×n is nonsingular and let N ∈ Rn×n such that
com(A,N) = UŨT with U, Ũ ∈ Rn×s. Let C ∈ Rn×r, then

N · EBk(A,C) ⊆ EBk(A,
[
NC,U

]
).

Proof. Let Np(A)Cw + Nq(A−1)Cv be a generator of N · EBk(A,C), where p(x) =∑k
j=0 αjx

j and q(x) =
∑k
j=0 βjx

j . Then, with a direct usage of Lemma B.3.5, the vector
Np(A)Cw can be expressed as an element of EBk(A,

[
NC,U

]
) in the following way

Np(A)Cw = N
k∑
j=0

αjA
jCw = p(A)NCw −

k∑
j=0

j−1∑
`=0

αjA
`U
(
ŨTAj−1−`Cw

)
.
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We can show that Nq(A−1)Cv belongs to the subspace EBk(A,
[
NC,U

]
) with the same

procedure and by using that com(A−1, N) = −(A−1U)(A−T Ũ)T .

In order to ease the notation and improve conciseness of the results that follow, we in-
troduce the following multivariate generalization of the Krylov subspace for more matrices

Gd(N1, . . . , Nm;U) := span ({p(N1, . . . , Nm)Uz|deg(p) ≤ d, z ∈ Rr}) ,

where U ∈ Rn×r and p is a non-commutative multivariate polynomial in the free algebra
R < x1, . . . , xN > (in the sense of [12, Chapter 10]).

Observation B.3.7. Note that Gd(N1, . . . , Nm;U) is the space generated by the columns
of the matrices obtained multiplying (in any order) s ≤ d matrices Ni and the matrix U .
In particular this space can be equivalently characterized as

Gd(N1, . . . , Nm;U) = span ({Ni1 · · ·NisUz | 1 ≤ ij ≤ m, 0 ≤ s ≤ d, z ∈ Rr}) .

This definition generalizes the definition of the standard Krylov subspace in the sense that
Gd(N ;U) = Bd(N,U).

The solution strategy for (B.3) outlined at the beginning of this subsection is formalized
in the following theorem. In order to state the theorem we need the result of the application
of the extended Krylov method to the (standard) Sylvester equations of the form

AY + YBT = C1C
T
2 , (B.22a)

AY + YBT = −
m∑
i=1

(NiLj)(MiRj)
T , (B.22b)

as described in [39, 15]. As already stated in Remark B.3.1, this is identical to applying
Algorithm B.1 with m = 0.

Theorem B.3.8. Consider the generalized Sylvester equation (B.3), with coefficients com-
muting according to (B.4). Let Ỹ0 = L0R

T
0 be the result of Algorithm B.1 applied to

the (standard) Sylvester equation (B.22a) with starting blocks C̄1 = C1 and C̄2 = C2.
Moreover, for j = 0, . . . , ` − 1, let Ỹj+1 = Lj+1R

T
j+1 be the result of Algorithm B.1

applied to the Sylvester equation (B.22b) with starting blocks C̄1 =
[
N1Lj , . . . , NmLj

]
and C̄2 =

[
M1Rj , . . . ,MmRj

]
. Let X̃(`) be the approximation of the truncated Neumann

series (B.7) given by

X̃(`) :=
∑̀
j=0

Ỹj .

Then, there exist matrices L,R, Ĉ(`)
1 , Ĉ

(`)
2 such that range(L) ⊆ EB(`+1)d(A, Ĉ

(`)
1 ) and

range(R) ⊆ EB(`+1)d(B, Ĉ
(`)
2 ) and

X̃(`) = LRT ,
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where

range(Ĉ
(`)
1 ) ⊆ G`(N1, . . . , Nm;C1) + G`−1(N1, . . . , Nm;U), (B.23a)

range(Ĉ
(`)
2 ) ⊆ G`(M1, . . . ,Mm;C2) + G`−1(M1, . . . ,Mm;Q), (B.23b)

and U :=
[
U1, . . . , Um

]
, Q :=

[
Q1, . . . , Qm

]
.

Proof. We start the proof by showing that for j = 0, . . . , `, there exists a matrix Sj such
that range(Lj) ⊆ EB(j+1)d(A,Sj) and

range(Sj)⊆ (B.24)

span

({(
j∏

k=1

Nik

)
C1w+p(N1,...,Nm)Uz

∣∣∣∣∣w∈Rr,z∈Rs,1≤ ik≤m,deg(p)≤j−1

})
,

where s =
∑m
i=1 si and si denotes the number of columns of Ui. We prove this claim

by induction. The basis of induction is trivially verified for j = 0 with S0 := C1 and
using Remark B.3.1. We now assume that the claim is valid for some j and perform the
induction step. Remark B.3.1 implies that range(Lj+1) ⊆ EBd(A,

[
N1Lj , . . . , NmLj

]
).

From Theorem B.3.6 and the induction hypothesis we have that

range(NiLj) ⊆ EB(j+1)d(A,
[
Ni, SjUi

]
)

for any i = 1, . . . ,m. Therefore we have that

range(Lj+1) ⊆ EB(j+2)d(A,
[
N1Sj , . . . , NmSj , U

]
).

We define Sj+1 :=
[
N1Sj , . . . , NmSj , U

]
which concludes the induction.

From (B.24) we now obtain the relation

range(
[
S0, . . . , Sj

]
) ⊆ Gj(N1, . . . , Nm;C1) + Gj−1(N1, . . . , Nm;U),

that directly implies (B.23a) by setting Ĉ(`)
1 :=

[
S0, . . . , S`

]
. Equation (B.23b) follows

from completely analogous reasoning. The final conclusion follows by defining L :=[
L0, . . . , L`

]
and R :=

[
R0, . . . , R`

]
.

The main message of the previous theorem can be summarized as follows: The low-
rank factors of the approximation of X(`) (B.7) obtained by solving the Sylvester equa-
tions (B.6) with K-PIK [39, 15] (that is equivalent to Algorithm B.1 as discussed in Re-
mark B.3.1), are contained in an extended Krylov subspace with a specific choice of the
starting blocks. In particular the starting blocks are selected as C̄1 = Ĉ

(`)
1 , C̄2 = Ĉ

(`)
2

where Ĉ(`)
1 and Ĉ(`)

2 fulfill (B.23a)–(B.23b). Our approach consists in applying Algo-
rithm B.1 directly to the generalized Sylvester equation (B.3) with this choice of the start-
ing blocks.

A practical procedure that generates starting blocks that fulfill (B.23) consists in select-
ing C̄1 and C̄2 such that their columns are a basis of the subspaces G`(N1, . . . , Nm;C1) +
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Figure B.1: Convergence history of Algorithm B.1 applied to a (randomly generated) gen-
eralized Lyapunov equation AX + XA + NXN = ccT with A circulant and N sum of
a circulant matrix plus a rank one uuT correction. The algorithm is tested for the stat-
ing blocks Ĉ(`) with ` = 0, 1, 2 selected according to Theorem B.3.6, i.e., Ĉ(0) = c,
Ĉ(1) =

[
c,Nc, u

]
, Ĉ(2) =

[
c,Nc,N2c, u,Nu

]
.

G`−1(N1, . . . , Nm;U) and G`(M1, . . . ,Mm;C2) + G`−1(M1, . . . ,Mm;Q) respectively.
A basis of such spaces can be computed by using Observation B.3.7. For example a basis
of G2(N1, N2;U) can be obtained from the columns of the matrix[

U, N1U, N2U, N1N2U, N2N1U, N
2
1U, N

2
2U
]
.

Observation B.3.9. The choice of the starting blocks involves the parameter `. In the-
ory, a suitable choice of ` could be derived by using Remark B.2.2. However, this is not
always possible since the quantity ρ(L −1 Π) is, in many cases, not known and computa-
tionally demanding to compute/estimate. The choice of ` is a trade-off between accuracy
and efficiency. The starting blocks Ĉ(`)

1 and Ĉ(`)
2 , for large `, provide spaces EBk(A, C̄1)

and EBk(B, C̄2) with better approximation features, but with potentially higher dimen-
sions. See Figure B.1. This leads to an increment in the computational cost of the whole
procedure but to a more accurate approximation to the solution to (B.3).

Our approach is computationally attractive only if the starting blocks C̄1 = Ĉ
(`)
1 and

C̄2 = Ĉ
(`)
2 have low rank. This condition is fulfilled if the commutators (B.4) are low-rank

matrices, see Observation B.3.7. Under this assumption, the advantages of the proposed
method can be summarized as follows: Algorithm B.1 generates only one pair of extended
Krylov subspaces with given starting blocks. There are other methods based on generating
several projection subspaces (with the same coefficient matrix), e.g., a direct computation
of X̃(`) or [38, 16] and [7, Section 5.3]. An advantage of our approach with respect to
these methods, consists in avoiding redundancy in the approximation spaces. In particular,
if several Krylov subspaces with the same coefficient matrix are generated independently
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of each other, they may have a nontrivial intersection or in general they may have similar
approximation properties. From a computational point of view, this means that consider-
able efforts are wasted to breed similar information.

In certain cases the dimension of the subspaces G` is bounded for all the `, i.e., there
exist matrices C̄1 ∈ Rn×r̄1 and C̄2 ∈ Rn×r̄2 such that range(Ĉ

(`)
1 ) ⊆ range(C̄1) and

range(Ĉ
(`)
2 ) ⊆ range(C̄2) for all `. This condition is satisfied, e.g., if the matrix coeffi-

cientsNi, Mi are nilpotent/idempotent or in general if they have low degree minimal poly-
nomials. Therefore, it is possible to select the starting blocks such that Algorithm B.1 pro-
vides an approximation of X(`) for all `, i.e., the full series (B.5) is approximated. These
situations naturally appear in applications, see the numerical example in Section B.4.3.

B.3.3 Krylov subspace method and low-rank matrices

Our numerical method can be improved for the following special case. We now consider
a generalized Sylvester equation (B.3) where Ni = UiŨTi and Mi = QiQ̃Ti are low-
rank matrices. Obviously, the commutators com(A,Ni) and com(B,Mi) also have low
rank and the theory and the procedure presented in the previous section cover this case.
However, the solution to (B.3) can be further characterized and an efficient (and different)
choice of the starting blocks C̄1, C̄2 can be derived. The assumption ρ(L −1 Π) < 1 is no
longer needed in order to justify the low-rank approximability. This property can be illus-
trated with a Sherman–Morrison–Woodbury argument as proposed in [8]. The following
proposition shows that, the generalized Sylvester equation (B.3) can be implicitly written
as a Sylvester equation with right-hand side involving the columns of the matrices Ui and
Qi for i = 1, . . . ,m. By using Remark B.3.1 this leads to the following natural choice of
starting blocks: C̄1 =

[
C1,U1, . . . ,Um

]
and C̄2 =

[
C2,Q1, . . . ,Qm

]
.

Proposition B.3.10. Consider the generalized Sylvester equation (B.3). Assume that L
is invertible, and that Ni = UiŨTi and Mi = QiQ̃Ti are such that Ui, Ũi ∈ Rn×si and
Qi, Q̃i ∈ Rn×ti . Then there exist αi,j,` ∈ R for j = 1, . . . , si, ` = 1, . . . , ti, and
i = 1, . . . ,m, such that

AX +XBT = C1C
T
2 −

∑
i,j,`

αi,j,` U (j)
i Q

(`)
i

T
,

where U (j)
i is the jth column of Ui, and Q(`)

i is the `th column of Qi.

Proof. The proof follows by [37, Theorem 4.1], or [16, Proposition 3.3], or [36, Theorem
2.2].

B.3.4 Solving the projected problem

In order to apply Algorithm B.1 we need to solve the projected problem in Step 4. The
projected problem has to be solved in every iteration and efficiency is therefore required
in practice. For completeness we now derive a procedure to solve the projected problem

140



Low-rank commuting generalized Sylvester equations

based on the Neumann series expansion derived in Section B.2.1, although this is certainly
not the only option. The derivation is based on the following observations. The projected
problem is a small generalized Sylvester equation (B.3), and the computation of X(`) in
(B.7) requires solving `+ 1 Sylvester equations (B.6). Since the Sylvester equations (B.6)
are defined by the same coefficients, they can be simultaneously reduced to triangular form
(cf., [36, Section 3]) as follows:

UAỸ0 + Ỹ0U
T
B = C̃1C̃

T
2 , (B.25a)

UAỸj+1 + Ỹj+1U
T
B = −

m∑
i=1

ÑiỸjM̃
T
i , j = 0, . . . , `− 1, (B.25b)

where we have defined

C̃1 := QTAC1, C̃2 := QTBC2, Ñi := QTANiQA, M̃i := QTBMiQB , (B.26)

and A = QAUAQ
T
A and B = QBUBQ

T
B denote the Schur decompositions. The Sylvester

equations (B.25) with triangular coefficients can be efficiently solved with backward substi-
tution as in the Bartels–Stewart algorithm [3] and it holds thatX(`) = QA

(∑`
j=0 Ỹj

)
QTB .

The Frobenius norm of the residualR(`) := AX(`)+X(`)BT+
∑m
i=1NiX

(`)MT
i −C1C

T
2

can be computed without explicitly constructing X(`) as follows:

‖R(`)‖F =

∥∥∥∥∥
m∑
i=1

ÑiỸ`M̃
T
i

∥∥∥∥∥
F

. (B.27)

The previous relation follows by simply using the properties of the Frobenius norm (in-
variance under orthogonal transformations) and the relations (B.25).

In conclusion, the following iterative procedure can be used to approximate the solution
to (B.3): The matrices (B.26) are precomputed, then the Sylvester equations in triangular
form (B.25) are solved until the residual of the Neumann series (B.27) is sufficiently small.
The approximation X(`) is not computed during the iteration, but only constructed after
the iteration has completed. The procedure is summarized in Algorithm B.2.

B.4 Numerical examples

We now illustrate our approach with several examples. In the first two examples, we com-
pare our approach with two different methods for generalized Lyapunov equations: Bi-
lADI [8] and GLEK [38]. The results are generally in favor of our approach, since the
other methods are less specialized to the specific structure. However, they have a wider
applicable problem domain. Two variants of BilADI are considered. In the first variant
we select the Wachspress shifts, see e.g., [43], computed with the software available on
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Algorithm B.2: Neumann series approach for (B.3).
input : Matrix coefficients: A,B,N1 . . . , Nm,M1, . . . ,Mm, C1, C2

output: Truncated Neumann series X(`)

1 Compute the Schur decompositions A = QAUAQ
T
A, B = QBUBQ

T
B

2 Compute C̃1, C̃2, Ñi M̃i for all i = 1, . . . ,m according to (B.26)
3 Solve UAỸ0 + Ỹ0U

T
B = C̃1C̃

T
2 and set X̃ = Ỹ0

for j = 0, 1, . . . till convergence do
4 Solve UAỸj+1 + Ỹj+1U

T
B = −

∑m
i=1 ÑiỸjM̃

T
i and set X̃ = X̃ + Ỹj+1

5 Compute ‖R(j+1)‖F = ‖
∑m
i=1 ÑiỸj+1M̃

T
i ‖F

if ‖R(j+1)‖F ≤ tol then
6 Set ` = j + 1
7 Break

8 Return X(`) = QAX̃Q
T
B

Saak’s web page1. In the second variant H2-optimal shifts [7] are used. The GLEK code
is available at the web page of Simoncini2. This algorithm requires fine-tune of several
thresholds. We selected tol_inexact= 10−2 while the default setting is used for all
the other thresholds. The implementation of our approach is based on the modification
of K-PIK [39, 15] for generalized Sylvester equation as described in Algorithm B.1. The
projected problems, computed in Step 4, are solved with the procedure described in the
Section B.3.4. A MATLAB implementation of Algorithm B.1 is available online3.

In all the methods that we test, the stopping criterion is based on the relative residual
norm and the algorithms are stopped when it reaches tol = 10−6. We compare: number
of iterations, memory requirements, rank of the computed approximation, number of linear
solves (involving the matricesA andB potentially shifted) and total execution CPU-times.

As memory requirement (denoted Mem. in the following tables) we consider the num-
ber of vectors of length n stored during the solution process. In particular, for Algo-
rithm B.1 it consists of the dimension of the approximation space. In GLEK, a sequence of
extended Krylov subspaces is generated and the memory requirement corresponds to the
dimension of the largest space in the sequence. For the bilinear ADI approach the mem-
ory requirement consists of the number of columns of the low-rank factor of the solution.
For GLEK, we just report the number of outer iterations. The CPU–times reported for
BilADI do no take into account the time for the shifts computation. For the linear solves,
the LU-factors are precomputed and reused in the algorithms. All results were obtained
with MATLAB R2015a on a computer with two 2 GHz processors and 128 GB of RAM.

1https://www.mpi-magdeburg.mpg.de/1694482/wachspress
2https://www.dm.unibo.it/~simoncin/software.html
3https://www.dm.unibo.it/~davide.palitta3
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B.4.1 A multiple input multiple output system (MIMO)

The time invariant multiple input multiple output (MIMO) bilinear system described in
[32, Example 2] yields the following generalized Lyapunov equation

AX +XAT + γ2
2∑
i=1

NiXN
T
i = CCT , (B.28)

where γ ∈ R, γ > 0, A = tridiag(2,−5, 2), N1 = tridiag(3, 0,−3) and N2 = −N1 + I .
We consider C ∈ Rn×2 being a normalized random matrix. In the context of bilinear
systems, the solution to (B.28), referred to as Gramian, is used for computing energy
estimates and reachability of the states. The number γ is a scaling parameter selected in
order to ensure the solvability of the problem (B.28) and the positive definiteness of the
solution, namely ρ(L −1 Π) < 1. This parameter corresponds to rescaling the input of
the underlying problem with a possible reduction in the region where energy estimates
hold. Therefore, it is preferable not to employ very small values of γ. See [9] for detailed
discussions.

For this problem the commutators have low rank. More precisely, com(A,N1) =
−com(A,N2) = UŨT , with U = 2

√
3
[
e1, en

]
and Ũ = 2

√
3
[
e1,−en

]
. As proposed in

Section B.3.2 we use Algorithm B.1 with starting blocks C̄1 = C̄2 =
[
C,N1C,U

]
since

range(C
(1)
1 ) = range(

[
C,N1C,N2C,U

]
) = range

([
C,N1C,U

])
. Table B.1 illustrates

the performances of our approach and the other low-rank methods, GLEK and the BilADI,
as γ varies. We notice that, the number of linear solves that our projection method requires

γ Its. Mem. rank(X) Lin. solves CPU time
BilADI (4 Wach.) 1/6 10 55 55 320 51.26

BilADI (8H2-opt.) 1/6 10 55 55 320 51.54
GLEK 1/6 9 151 34 644 14.17

Algorithm B.1 1/6 6 72 60 36 3.77
BilADI (4 Wach.) 1/5 14 71 71 588 55.15

BilADI (8H2-opt.) 1/5 14 69 69 586 54.31
GLEK 1/5 12 173 39 1016 22.06

Algorithm B.1 1/5 6 72 61 36 4.23
BilADI (4 Wach.) 1/4 24 89 89 1454 67.61

BilADI (8H2-opt.) 1/4 23 89 89 1371 66.83
GLEK 1/4 21 218 50 2348 51.49

Algorithm B.1 1/4 8 96 81 48 6.72

Table B.1: MIMO example. Comparison of low-rank methods for n = 50000.

is always much less than for the other methods. Moreover, it seems that moderate variations
of γ, that correspond to variations of ρ(L −1 Π), have a smaller influence on the number
of iterations in our method compared to the other algorithms.
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B.4.2 A low-rank problem

We now consider the following generalized Lyapunov equation

AX +XAT + UV TXV UT = ccT , (B.29)

where A = n2tridiag(1,−2, 1) and U, V ∈ Rn×m, c ∈ Rn have random entries and
unit norm. We use Algorithm B.1, and as proposed in Section B.3.3, we select C̄1 =
C̄2 =

[
c, U

]
as starting blocks. In Table B.2 we report the results of the comparison to

the other methods for m = 1. We notice that our approach requires the lowest number

n Its. Mem. rank(X) Lin. solves CPU time
BilADI (4 Wach.) 10000 60 57 57 2462 4.25

BilADI (8H2-opt.) 10000 42 55 55 1420 2.54
GLEK 10000 4 240 28 310 3.10

Algorithm B.1 10000 46 184 49 92 2.77
BilADI (4 Wach.) 50000 327 61 61 18673 315.56

BilADI (8H2-opt.) 50000 96 61 61 4580 81.47
GLEK 50000 4 454 28 565 24.78

Algorithm B.1 50000 78 312 47 156 21.09
BilADI (4 Wach.) 100000 - - - - -

BilADI (8H2-opt.) 100000 84 65 65 4058 174.04
GLEK 100000 4 457 29 631 66.77

Algorithm B.1 100000 97 388 44 194 55.58

Table B.2: Comparison of low-rank methods applied to (B.29) varying n with m = 1.

of linear solves. The ADI approaches demand the lowest storage because of the column
compression strategy performed at each iteration. However, due to the large number of lin-
ear solves, these methods are slower compared to our approach. For large-scale problems
the BilADI method with 4 Wachspress shifts does not converge in 500 iterations. GLEK
provides the solution with the smallest rank.

We now consider (B.29) for m > 1. Notice that, in equation (B.3), this corresponds to
have the operator Π (B.2) defined by the sum of m terms of rank 1. In particular, we apply
Algorithm B.1 to equation (B.29) form = 5, 10, 15. The results are collected in Table B.3.
The number of iterations needed decreases as m increases. However, since the rank of the
starting block increases with m, the dimension of the approximation space increases, and
thus the number of linear solves. As a result, the computation time increases with m.

If we replace the matrix A with A/n2 in equation (B.29), neither BilADI nor GLEK
converge since the Lyapunov operator is no longer dominant, i.e., ρ(L −1 Π) > 1. How-
ever, our algorithm still converges, and for n = 10000, m = 1, it provides a solution X in
46 iterations with rank(X) = 184. In this case, the projected problems cannot be solved
with the approach described in the Section B.3.4. However, since the projected problems
are also of the form (B.29), they can be solved with a Sherman–Morrison–Woodbury ap-
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n m Its. Mem. rank(X) Lin. solves CPU time
10000 5 33 396 50 198 9.38
10000 10 27 594 48 297 19.87
10000 15 24 768 44 384 27.35
50000 5 55 660 43 330 54.87
50000 10 45 990 41 495 117.26
50000 15 40 1280 42 640 245.87

100000 5 68 816 43 408 133.72
100000 10 56 1232 41 616 332.68
100000 15 50 1600 44 800 743.86

Table B.3: Algorithm B.1 applied to (B.29) varying n and m.

proach for matrix equation [16, 36, 37]. In this case we used the method presented in [16,
Section 3].

B.4.3 Inhomogeneous Helmholtz equation

In the last example, we analyze the complexity of Algorithm B.1 when solving a large-
scale generalized Sylvester equation stemming from a finite difference discretization of a
PDE. More precisely, we consider the following inhomogeneous Helmholtz equation −∆u(x, y) + κ(x, y)u(x, y) = f(x, y), (x, y) ∈ [0, 1]× R,

u(0, y) = u(1, y) = 0,
u(x, y + 1) = u(x, y).

(B.30)

The boundary conditions are periodic in the y-direction and homogeneous-Dirichlet in the
x-direction. The wavenumber κ(x, y) and the forcing term f(x, y) are 1-periodic functions
in the y-direction. In particular they are respectively the periodic extensions of the scaled
indicator functions χ[1/2,1]2 and 100χ[1/4,1/2]2 . The discretization of equation (B.30) with
the finite difference method, using n nodes multiple of 4, leads to the following generalized
Sylvester equation

AX +XBT +NXNT = CCT , (B.31)

where B = −tridiag(1,−2, 1)/h2 and A = B −
[
e1, en

] [
en, e1

]T
/h2, with h = 1/(n−

1) being the mesh-size, and

N =

[
On/2 On/2
On/2 In/2

]
∈ Rn×n, C =

[
c1, . . . , cn

]T
, ci =

{
10, if i ∈ [n/4, n/2],

0, otherwise.

A direct computation shows that com(A,N) = UŨT and com(B,N) = QQ̃T where

U = n
[
en/2+1, en/2, e1, en

]
, Ũ = n

[
en/2,−en/2+1,−en, e1

]
,

Q = n
[
en/2+1, en/2

]
, Q̃ = n

[
en/2,−en/2+1

]
.
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Figure B.2: Simulations for the inhomogeneous Helmholtz equation.

Algorithm B.1 is not applicable to equation (B.31) since the matrixA is singular. However,
in our approach it is possible to shift the Sylvester operator. In particular we can rewrite
equation (B.31) as

(A+ I)X +XBT +NXNT −X = CCT .

It is now possible to apply Algorithm B.1 since A + I is nonsingular. For this problem
it holds N2 = N and then G`(N, I;C) = range(

[
C,NC

]
) for all ` ≥ 1. We note that

com(A + I,N) = com(A,N), and that NC = 0 and range(
[
U,NU

]
) = range(U).

Hence, according to Theorem B.3.6 we select C̄1 =
[
C,U

]
and C̄2 =

[
C,Q

]
as starting

blocks. Notice that, with this choice, Algorithm B.1 provides an approximation of X(`)

for every ` ≥ 0. We fix the number of iterations d = 30 in Algorithm B.1, and we vary
the problem size n. In Figure B.2b we report the percentages of the overall execution
time devoted to the orthogonalization procedure (Steps 9–11), to the solution of the inner
problems (Step 4) and to the remaining steps of the algorithm. We can see that for very
large problems, most of the computational effort is dedicated to the orthogonalization pro-
cedure. See Figure B.2a for an illustration of the converge history for the problem of size
n = 10000.

B.5 Conclusions and outlook

The method that we have proposed for solving (B.3) is directly based on the low-rank
commutation feature of the matrix coefficients (B.4). We have applied and adapted our
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procedure to problems in control theory and discretization of PDEs that naturally present
this property. The structured matrices that present this feature are already analyzed in
literature although, to our knowledge, this was never exploited in the setting of Krylov-like
methods for matrix equations. Low-rank commuting matrices are usually studied with the
displacement operators. More precisely, for a given matrix Z, the displacement operator
is defined as F (A) := AZ − ZA. For many specific choices of the matrix Z, e.g., Jordan
block, circulant, etc., it is possible to characterize the displacement operator and describe
the matrices that are low-rank commuting with Z. See, e.g., [25, 6], [13, Chap. 2, Sec. 11]
and references therein. The theory concerning the displacement operator may potentially
be used to classify the problems that can be solved with our approach.

The approach we have pursued in this paper is based on the extended Krylov subspace
method. However, it seems to be possible to extend this to the rational Krylov subspace
method [17] since, the commutator com(A,N) is invariant under translations of the matrix
A. Further research is needed to characterize the spaces and study efficient shift-selection
strategies.

In each iteration of Algorithm B.1 the residual can be computed without explicitly
constructing the current approximation of the solution but only using the solution of the
projected problem. It may be possible to compute the residual norm even without explicitly
solving the projected problems as proposed in [34] for Lyapunov and Sylvester equations
with symmetric matrix coefficients.

In conclusion, we wish to point out that the low-rank approximability characterization
may be of use outside of the scope of projection methods. For instance, the Riemannian
optimization methods are designed to compute the best rank k approximation (in the sense
of, e.g., [28, 42]) to the solution of the matrix equation. This approach is effective only
if k is small, i.e., the solution is approximable by a low-rank matrix, for which we have
provided sufficient conditions.
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Abstract

This paper treats iterative solution methods for the generalized Lyapunov equation.
Specifically, a residual-based generalized rational-Krylov-type subspace is proposed.
Furthermore, the existing theoretical justification for the alternating linear scheme
(ALS) is extended from the stable Lyapunov equation to the stable generalized Lya-
punov equation. Further insights are gained by connecting the energy-norm minimiza-
tion in ALS to the theory of H2-optimality of an associated bilinear control system.
Moreover, it is shown that the ALS-based iteration can be understood as iteratively
constructing rank-1 model reduction subspaces for bilinear control systems associated
with the residual. Similar to the ALS-based iteration, the fixed-point iteration can also
be seen as a residual-based method minimizing an upper bound of the associated en-
ergy norm.

Keywords: Generalized Lyapunov equation, H2-optimal model reduction, bilinear con-
trol systems, alternating linear scheme, projection methods, matrix equations, rational
Krylov

C.1 Introduction

This paper concerns iterative ways to compute approximate solutions to what has become
known as the generalized Lyapunov equation,

L (X) + Π(X) +BBT = 0, (C.1)

where X ∈ Rn×n is unknown, B ∈ Rn×r is given, and the operators L ,Π : Rn×n →
Rn×n are defined as

L (X) := AX +XAT (C.2)

Π(X) :=
m∑
i=1

NiXN
T
i , (C.3)
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with A,Ni ∈ Rn×n for i = 1, . . . ,m given. The operator L is commonly known as the
Lyapunov operator, and Π is sometimes called a correction. We further assume that A is
stable, i.e., A has all its eigenvalues in the left-half plane, which implies that L is invert-
ible [23, Theorem 4.4.6]. Moreover, we assume that ρ(L −1 Π) < 1, where ρ denotes the
(operator) spectral radius. The assumption on the spectral radius implies that (C.1) has a
unique solution [24, Theorem 2.1]. Furthermore, the definition of Π in (C.3) implies that it
is non-negative, in the sense that Π(X) is positive semidefinite whenX is positive semidef-
inite. Thus, one can assert that, for all positive definite right-hand sides, the unique solution
X is indeed positive definite [9, Theorem 3.9][12, Theorem 4.1]. Under these assumptions
we prove that the alternating linear scheme (ALS) presented by Kressner and Sirković in
[25] computes search directions which at each step fulfill a first order necessary condition
for beingH2-optimal. Moreover, we show an equivalence between the bilinear iterative ra-
tional Krylov (BIRKA) method [5, 19] and the ALS-iteration for the generalized Lyapunov
equation. The established equivalence leads to that the ALS-iteration for the generalized
Lyapunov equation can be understood as iteratively computing model reduction spaces of
dimension 1 for a sequence of bilinear control systems associated with the residual of the
generalized Lyapunov equation (Section C.3). We also present a residual-based general-
ized rational-Krylov-type subspace adapted for solving the generalized Lyapunov equation
(Section C.5). A further result regards the fixed-point iteration, a residual-based iteration
which we show minimizes an upper bound of the energy norm (Section C.4).

The standard Lyapunov equation, AX +XAT +BBT = 0, has been well studied for
a long time and considerable research effort has been, and is still, put into finding efficient
algorithms for computing the solution and approximations thereof. For large and sparse
problems it is typical to look for low-rank approximations since algorithms can be adapted
to exploit the low-rank format, reducing computational effort and storage requirement.
One such algorithm is the Riemannian optimization method from [40] which computes a
low-rank approximation by minimizing an associated cost function over the manifold of
rank-k matrices, where k � n. The Lyapunov equation has a close connection to control
theory. Hence, methods such as the iterative rational Krylov algorithm (IRKA) [21, 18],
which computes subspaces for locally H2-optimal reduced order linear systems, provide
good approximation spaces for low-rank approximations. Related research is presented in
a series of papers [13, 14, 15], where Druskin and co-authors develop a strategy to choose
shifts for the rational Krylov subspace for efficient subspace reduction when solving PDEs
[13, 14], as well as for model reduction of linear single-input-single-output (SISO) systems
and solutions to Lyapunov equations [15]. Instead of computing full spaces iteratively
with a method such as IRKA, the idea is to construct an infinite sequence with asymptoti-
cally optimal convergence speed [13]. Then the subspace can be dynamically extended as
needed, until required precision is achieved. The idea is also further developed by using
tangential directions, proving especially useful for situations where the right-hand side is
not of particularly low rank [16], e.g., multiple-input-multiple-output (MIMO) systems.
For a more complete overview of results and techniques for Lyapunov equations see the
review article [38].

The generalized Lyapunov equation has received increased attention over the past
decade. Results on low-rank approximability have emerged [6, 24]. More precisely, sim-
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ilarly to the standard Lyapunov equation one can in certain cases when the right-hand
side B is of low rank, r � n, expect the singular values of the solution to decay rapidly
even for the generalized Lyapunov equation. The result [6, Theorem 1] is applicable when
the matrices Ni for i = 1, . . . ,m have low rank, and the result [24, Theorem 2] when
ρ(L −1 Π) < 1. Examples of algorithms exploiting low-rank structures are a Bilinear ADI
method [6], specializations of Krylov methods for matrix equations [24], as well as greedy
low-rank methods [25], and exploitations of the fixed-point iteration [37]. Through the
connection with bilinear control systems there is an extension of IRKA, known as bilinear
iterative rational Krylov (BIRKA) [5, 19]. There are also methods based on Lyapunov and
ADI-preconditioned GMRES and BiCGStab [12], and in general for problems with tensor
product structure [26]. In the context of stochastic steady-state diffusion equations, ratio-
nal Krylov subspace methods for generalized Sylvester equations have also been analyzed
in [32]. The suggested search space is based on a union of rational Krylov subspaces, as
well as combinations of rational functions, generated by the coefficient matrices defining
the generalized Sylvester operator. We also mention that for the case when the correction
Π has low operator-rank, there is a specialization of the Sherman–Morrison–Woodbury
formula to the linear matrix equation; see [33] or [12, Section 3]. The result has been
exploited in works such as [6, 34, 28]. Recently, the generalized Lyapunov equation has
also been considered on an infinite-dimensional Hilbert space, see [4]. In particular, the
authors show ([4, Proposition 1.1]) that the Gramians solving the generalized linear opera-
tor equations can be approximated by truncated Gramians that are associated to a sequence
of standard operator Lyapunov equations.

C.2 Preliminaries

C.2.1 Generalized matrix equations and approximations

We recall some basic definitions and results that will be used later in the paper. In general
we will think of X̂k ∈ Rn×n as an approximation of the solution to (C.1), where k is
typically an iteration count. Connected with an approximation X̂k is the corresponding
error

Xe
k := X − X̂k, (C.4)

where X is the exact solution to (C.1), and the residual,

Rk := L (X̂k) + Π(X̂k) +BBT . (C.5)

The goal is to find an X̂k such that ‖Xe
k‖ is small for some norm. Since ‖Xe

k‖ is usually not
available in practice, one instead aims at a small residual norm ‖Rk‖. To discuss projection
methods and make the results precise, we make the following (standard) definition.

Definition C.2.1 (The Galerkin approximation). Let Kk ⊆ Rn be an nk ≤ n dimensional
subspace for k = 0, 1, . . . , and let Vk ∈ Rn×nk be a matrix containing an orthogonal basis
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of Kk. We call X̂k the Galerkin approximation to (C.1), in Kk, if X̂k = Vk Yk VTk and Yk
is determined by the condition

VTk
(
L (X̂k) + Π(X̂k) +BBT

)
Vk = 0. (C.6)

For the generalized Lyapunov equation there are certain sufficient conditions for the
Galerkin approximation to exist and be unique, e.g., the criteria in [9, Theorem 3.9],[12,
Theorem 4.1] or [24, Proposition 3.2]. Related to the Galerkin approximation there is also
the (standard) definition of the Galerkin residual.

Definition C.2.2 (The Galerkin residual). We call Rk from (C.5) the Galerkin residual if
X̂k is the Galerkin approximation.

The condition (C.6) is known as both the projected problem and the Galerkin condi-
tion, and it states that VTk Rk Vk = 0 for the Galerkin residual. Some of the results and
arguments presented below are valid for a (generic) residual and others, more specialized,
only for the Galerkin residual. However, it will be clear from context and the Galerkin
residual will always be referenced as such.

The following fundamental result from linear algebra will be important for us. The
specialization for the Lyapunov equation was presented already by Smith in [39]. For
generalized matrix equations cf. [12, Section 4.2], and [25, Algorithm 2]; and an analogy
for the algebraic Riccati equation in [29].

Proposition C.2.3 (Residual equation). Consider equation (C.1). Let X̂k be an approxi-
mation of the solution,Rk be the residual (C.5), and Xe

k be the error (C.4). Then

L (Xe
k) + Π(Xe

k) +Rk = 0.

One strategy for computing updates to the current approximation is to compute ap-
proximations of the error. Proposition C.2.3 allows such iterations by connecting the error
with the known, or computable, quantities L , Π and Rk. The idea is well established in
the literature and is, e.g., analogous to the defect correction method [29] and the RADI
method [8] for the algebraic Riccati equation, as well as the iterative improvement [20,
Section 3.5.3] for a general linear system. For future reference we also need the following
basic definition.

Definition C.2.4 (Symmetric generalized Lyapunov equation). The generalized Lyapunov
equation

AX +XAT +
m∑
i=1

NiXN
T
i +BBT = 0, (C.7)

is called symmetric if A = AT and Ni = NT
i for i = 1, . . . ,m.
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C.2.2 Bilinear systems

We recall some control theoretic concepts for bilinear control systems of the form

Σ

ẋ(t) = Ax(t) +
m∑
i=1

Nix(t)wi(t) +Bu(t)

y(t) = Cx(t),

(C.8)

with A,Ni ∈ Rn×n, B ∈ Rn×r and C ∈ Rp×n and control inputs u(t) ∈ Rr and w(t) ∈
Rm.

Remark C.2.5. Note that the bilinear system (C.8) differs from the notation frequently
used in the literature, e.g., [1, 2, 5, 9, 12, 19, 41]. The formulation (C.8) is convenient
since it allows for m 6= r. However, the system Σ can be put into the usual form by
considering the input vector

[
w(t)T , u(t)T

]T
, adding m zero-columns to the beginning

of B, i.e.,
[
0, B

]
, and considering the matrices Nm+1 = 0, . . . , Nm+r = 0. The system

Σ can also be compared to systems from applications, e.g., [30, Equation (2)].

As in [2], for a MIMO bilinear system (C.8), we define the controllability and observ-
ability Gramians as follows.

Definition C.2.6 (Bilinear Gramians [2]). Consider the bilinear system (C.8) withA stable.
Moreover, let P1(t1) := eAt1B, Pj(t1, . . . , tj) := eAtj

[
N1Pj−1, . . . , NmPj−1

]
for j =

2, 3, . . . , Q1(t1) := CeAt1 , and Qj(t1, . . . , tj) :=
[
NT

1 Q
T
j−1, . . . , N

T
mQ

T
j−1

]T
eAtj for

j = 2, 3, . . . . We define the controllability and observability Gramian respectively as

P :=
∞∑
j=1

∫ ∞
0

· · ·
∫ ∞

0

PjP
T
j dt1 . . . dtj

Q :=
∞∑
j=1

∫ ∞
0

· · ·
∫ ∞

0

QTj Qjdt1 . . . dtj .

It is possible that the generalized Gramians from Definition C.2.6 do not exist; suffi-
cient conditions are given in, e.g., [41, Theorem 2]. However, if the Gramians exist we
also know that they satisfy the following matrix equations

AP + PAT +
m∑
i=1

NiPN
T
i +BBT = 0

ATQ+QA+
m∑
i=1

NT
i QNi + CTC = 0.

(C.9)

In relation to the generalized controllability and observability Gramians, one might also
define a generalized cross Gramian similar to the SISO case discussed in [36]. Consider
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the symmetric generalized Lyapunov equation (C.7), and an approximation X̂k with related
error Xe

k, and residualRk. One can easily verify that for the auxiliary system

Σe =

ẋ(t) = Ax(t) +
m∑
i=1

Nix(t)wi(t) +BRk
u(t)

y(t) = CRk
x(t),

with BRk
= US1/2 and CRk

= S1/2V T , whereRk = USV T is a singular value decom-
position of Rk, the associated cross Gramian coincides with the error Xe

k. In the special
case whereRk = RTk � 0, it is easy to show the following result.

Proposition C.2.7. Consider the symmetric generalized Lyapunov equation (C.7). Let
X̂k be an approximation such that the residual Rk = RTk � 0. Then one can choose
BRk

= CTRk
and the error Xe

k is the controllability and observability Gramian of the
system Σe.

For what follows, we recall the definition of theH2-norm for bilinear systems that was
introduced by Zhang and Lam in [41].

Definition C.2.8 ([41], Bilinear H2-norm). Consider the bilinear system Σ from (C.8).
We define theH2-norm of Σ as

‖Σ‖2H2
:= Tr

 ∞∑
j=1

∫ ∞
0

· · ·
∫ ∞

0

m∑
`1,··· ,`j−1=1

r∑
`j=1

g
(`1,...,`j)
j (g

(`1,...,`j)
j )Tds1 · · · dsj

 ,

with g(`1,...,`j)
j (s1, . . . , sj) := CeAsjN`1e

Asj−1N`2 · · · eAs1b`j .

It has been shown [41, Theorem 6] that if the Gramians from Definition C.2.6 ex-
ist, then

‖Σ‖2H2
= Tr

(
CPCT

)
= Tr

(
BTQB

)
.

C.3 ALS andH2-optimal model reduction for bilinear systems

In this section, we discuss a low-rank approximation method proposed by Kressner and
Sirković in [25]. We show that several results can be generalized from the case of the
standard Lyapunov equation to the more general form (C.1). Moreover, we show that in
the symmetric case the method allows for an interpretation in terms of H2-optimal model
reduction for bilinear control systems. With this in mind, we assume that we have a sym-
metric generalized Lyapunov equation (C.7). If additionally A ≺ 0 and ρ(L −1 Π) < 1,
then the operatorM(X) := −L (X)− Π(X) is positive definite and allows us to define
a weighted inner product via

〈·, ·〉M : Rn×n × Rn×n → R
〈X,Y 〉M = 〈X,M(Y )〉 = Tr

(
XTM(Y )

)
,

158



Residual iterations for generalized Lyapunov equation

with a corresponding inducedM-norm, also known as energy norm,

‖X‖2M = 〈X,X〉M.

C.3.1 ALS for the generalized Lyapunov equation

In [25], it is suggested to construct iterative approximations X̂k by rank-1 updates that
are locally optimal with respect to theM-norm. To be more precise, assume that X is a
solution to the symmetric Lyapunov equation (C.7), i.e., AX + XA +

∑m
i=1NiXNi +

BBT = 0. Given an approximation X̂k, we consider the minimization problem

min
v,w∈Rn

‖X − X̂k − vwT ‖2M = 〈X − X̂k − vwT , X − X̂k − vwT 〉M.

Since the minimization involves the constant term ‖X − X̂k‖2M, it suffices to focus on

J(v, w) := 〈vwT , vwT 〉M − 2 Tr
(
wvTRk

)
, (C.10)

where Rk is the current residual, i.e., (C.5). Locally optimal vectors vk and wk are then
(approximately) determined via an alternating linear scheme (ALS). The main step is to
fix one of the two vectors, e.g., v and then minimize the strictly convex objective function
to obtain an update for w. A pseudocode is given in Algorithm C.1.

Algorithm C.1: ALS for the generalized Lyapunov equation [25, Algorithm 1]
input : System: A,N1, . . . , Nm ∈ Rn×n Rk ∈ Rn×n, tol

Initial guess: v, w ∈ Rn
output: Approximation vectors: va, wa ∈ Rn

while Change in (v
TAv
‖v‖2 + wTATw

‖w‖2 )/2 larger than tol do

1 Normalize w = w/‖w‖
2 Â1 = A+ I(wTAw) +

∑m
i=1Ni(w

TNiw)

3 Solve Â1v = −Rkw
4 Normalize v = v/‖v‖
5 Â2 = A+ I(vTAv) +

∑m
i=1(vTNiv)Ni

6 Solve Â2w = −RTk v
7 Normalize such that ‖w‖ = ‖v‖

return va = v, wa = w

In view of Proposition C.2.3 the ALS-based approach for computing new subspace
extensions can be seen as searching for an approximation to Xe

k of the form vkw
T
k by

iterating (L (vkw
T
k )+Π(vkw

T
k )+Rk)wk = 0 when determining vk and vTk (L (vkw

T
k )+

Π(vkw
T
k )+Rk) = 0 when determiningwk. This is to say that the error is approximated by

a rank-1 matrix, and at convergence this would result in the new residual,Rk+1, being left-
orthogonal to vk and right-orthogonal to wk. In the symmetric case, local minimizers of
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(C.10) are necessarily symmetric positive semidefinite. This yields the following extension
of [25, Lemma 2.3].

Lemma C.3.1. Consider the symmetric generalized Lyapunov equation (C.7) and assume
that A ≺ 0, ρ(L −1 Π) < 1, and Rk = RTk � 0. Let J be as in (C.10). Then every local
minimum (v∗, w∗) of J is such that v∗wT∗ is symmetric positive semidefinite.

Proof. The proof naturally follows along the lines of [25, Lemma 2.3], and hence without
loss of generality we assume that v∗ 6= 0 , w∗ 6= 0, and ‖v∗‖ = ‖w∗‖. Thus, v∗wT∗ is
positive semidefinite if and only if v∗ = w∗. The proof is by contradiction and we assume
that v∗ 6= w∗. Then, since J(v∗, w) is strictly convex in w and J(v, w∗) is strictly convex
in v, it follows that

2J(v∗, w∗) < J(v∗, v∗) + J(w∗, w∗).

Simplifying the left-hand side we get

2J(v∗, w∗) = −2vT∗ L (v∗w
T
∗ )w∗ − 2vT∗ Π(v∗w

T
∗ )w∗ − 4vT∗ Rkw∗,

and similarly the right-hand side gives

J(v∗, v∗) + J(w∗, w∗) =− vT∗ L (v∗v
T
∗ )v∗ − vT∗ Π(v∗v

T
∗ )v∗ − 2vT∗ Rkv∗

− wT∗ L (w∗w
T
∗ )w∗ − wT∗ Π(w∗w

T
∗ )w∗ − 2wT∗Rkw∗.

Collecting the terms involving the L -operator we observe that

−2vT∗ L (v∗w
T
∗ )w∗ + vT∗ L (v∗v

T
∗ )v∗ + wT∗ L (w∗w

T
∗ )w∗ =

2(vT∗ v∗)(w
T
∗ Aw∗ − vT∗ Av∗) + 2wT∗ w∗(v

T
∗ Av∗ − wT∗ Aw∗) = 0,

Thus, by collecting the terms involving the Π-operator to the left, and the residual to the
right, the inequality reduces to

−2vT∗ Π(v∗w
T
∗ )w∗ + vT∗ Π(v∗v

T
∗ )v∗ + wT∗ Π(w∗w

T
∗ )w∗ < −2(v∗ − w∗)TRk(v∗ − w∗).

The argument is now concluded by showing that

−2vT∗ Π(v∗w
T
∗ )w∗ + vT∗ Π(v∗v

T
∗ )v∗ + wT∗ Π(w∗w

T
∗ )w∗ ≥ 0,

since this implies that −2(v∗ − w∗)TRk(v∗ − w∗) > 0 in contradiction to the positive
semidefiniteness of Rk. We can without loss of generality consider m = 1, i.e., only one
N -matrix, since the following argument can be applied to all terms in the sum indepen-
dently. We observe that

−2vT∗ Nv∗w
T
∗ Nw∗ + vT∗ Nv∗v

T
∗ Nv∗ + wT∗ Nw∗w

T
∗ Nw∗ = (vT∗ Nv∗ − wT∗ Nw∗)2 ≥ 0,

which shows the desired inequality and thus concludes the proof.
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Algorithm C.1 and the argument in Lemma C.3.1 are based on a residual. However, if
X̂k = 0, then Rk = BBT , and hence the result is applicable directly to any symmetric
generalized Lyapunov equation. The focus on the residual in the previous results is natural
since it leads to the following extension of [25, Theorem 2.4] to the case of the symmetric
generalized Lyapunov equation.

Theorem C.3.2. Consider the symmetric generalized Lyapunov equation (C.7) with the
additional assumptions that A ≺ 0 and ρ(L −1 Π) < 1. Moreover, consider the sequence
of approximations constructed as

X̂0 = 0

X̂k+1 = X̂k + vk+1v
T
k+1, k = 0, 1, . . . ,

(C.11)

where vk+1 is a locally optimal vector computed with ALS (Algorithm C.1). ThenRk+1 =
RTk+1 � 0 for all k ≥ −1.

Proof. We show the assertion by induction. It clearly holds that R0 = RT0 � 0. Now
assume that this is the case for some k. From Lemma C.3.1 the local minimizers of (C.10)
are symmetric and hence X̂k+1 is reasonably defined in (C.11). Moreover, since X̂k+1

and the operators in (C.1) are symmetric it follows that Rk+1 is symmetric. Thus, what is
left to show is that Rk+1 � 0, which is true if and only if yTRk+1y ≥ 0 for all y ∈ Rn.
Hence, take an arbitrary y ∈ Rn and consider yTRk+1y. We derive properties similar to
[25, equations (12)-(14)]:

Since (vk+1, vk+1) is a (local) minimizer of J(v, w), it also follows that vk+1 is a
(global) minimizer of the (convex) cost function

Jw(v) := J(v, w) = 〈vwT , vwT 〉M − 2 Tr(wvTRk),

where w = vk+1. Note that the gradient∇vJw of Jw with respect to v is given by

(∇vJw)i = 2〈eiwT , vwT 〉M − 2eTi Rkw.

Due to the optimality of vk+1 with respect to Jvk+1
, first order optimality conditions then

imply that

−Avk+1v
T
k+1vk+1 − vk+1v

T
k+1Avk+1 −

m∑
i=1

Nivk+1v
T
k+1Nivk+1 = Rkvk+1. (C.12)

Striking this equality with vTk+1 from the left implies that

2vTk+1Avk+1‖vk+1‖2 = −vTk+1Rkvk+1 −
m∑
i=1

(vTk+1Nivk+1)2. (C.13)
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Based on (C.12) and its transpose, and by exploiting the symmetry of the involved matrices,
we can write the residual as

yTRk+1y = yTRky + yT

(
Avk+1v

T
k+1 + vk+1v

T
k+1A+

m∑
i=1

Nivk+1v
T
k+1Ni

)
y

= yTRky +
m∑
i=1

yTNivk+1v
T
k+1Niy +

1

‖vk+1‖2
yT (Uk+1 + UTk+1)y,

with Uk+1 := −Rkvk+1v
T
k+1−(vTk+1Avk+1)vk+1v

T
k+1−

∑m
i=1Nivk+1z

T
i,k+1, and where

zi,k+1 := (vTk+1Nivk+1)vk+1. We rearrange, identify the term −2(vTk+1Avk+1)vk+1v
T
k+1

and insert (C.13) to get

yTRk+1y = yTRky

+
1

‖vk+1‖2
yT
(
−Rkvk+1v

T
k+1 − vk+1v

T
k+1Rk +

1

‖vk+1‖2
vTk+1Rkvk+1vk+1v

T
k+1

)
y

+
1

‖vk+1‖2
yT
(

m∑
i=1

Nivk+1v
T
k+1Ni‖vk+1‖2 +

1

‖vk+1‖2
m∑
i=1

zi,k+1z
T
i,k+1

)
y

+
1

‖vk+1‖2
yT
(
−

m∑
i=1

Nivk+1z
T
i,k+1 −

m∑
i=1

zi,k+1v
T
k+1Ni

)
y

= yTRky +
1

‖vk+1‖2

(
−2(yTRkvk+1)(vTk+1y) +

1

‖vk+1‖2
(vTk+1Rkvk+1)(vTk+1y)2

)
+

1

‖vk+1‖2
( m∑
i=1

(yTNivk+1)2‖vk+1‖2 +
1

‖vk+1‖2
(zTi,k+1y)2 − 2(yTNivk+1)(zTi,k+1y)

)

= (y − vk+1
vTk+1y

‖vk+1‖2
)TRk(y − vk+1

vTk+1y

‖vk+1‖2
)

+
1

‖vk+1‖2
m∑
i=1

(
‖vk+1‖(yTNivk+1)− 1

‖vk+1‖
(zTi,k+1y)

)2

≥ 0.

This asserts the inductive step and hence concludes the proof.

Corollary C.3.3. The iteration (C.11) produces an increasing sequence of approximations
0 = X̂0 � X̂1 � · · · � X .

C.3.2 H2-optimal model reduction for symmetric state space systems

For the standard Lyapunov equation it has been shown, in [7], that minimization of the
energy norm induced by the Lyapunov operator (see [40]) is related to H2-optimal model
reduction for linear control systems. We show that a similar conclusion can be drawn
for the minimization of the cost functional (C.10) and H2-optimal model reduction for
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symmetric bilinear control systems. In this regard, let us briefly summarize the most im-
portant concepts from bilinear model reduction. Given a bilinear system Σ as in (C.8) with
dim(Σ) = n, the goal of model reduction is to construct a surrogate model Σ̂ of the form

Σ̂ :


˙̂x(t) = Âx̂(t) +

m∑
i=1

N̂ix̂(t)wi(t) + B̂u(t)

ŷ(t) = Ĉx̂(t),

(C.14)

with Â, N̂i ∈ Rk×k, B̂ ∈ Rk×r, Ĉ ∈ Rr×k and control inputs u(t) ∈ Rr and w(t) ∈
Rm. In particular, the reduced system should satisfy k � n and ŷ(t) ≈ y(t) in some
norm. In [5, 19] the authors have suggested an algorithm, BIRKA, that iteratively tries to
compute a reduced model satisfying first order necessary conditions forH2-optimality, for
the bilinearH2-norm as defined in Definition C.2.8. A corresponding pseudocode is given
in Algorithm C.2.

Algorithm C.2: BIRKA [5, Algorithm 2] and [19, Algorithm 5]
input : System: A,N1, . . . , Nm ∈ Rn×n B ∈ Rn×r, C ∈ Rr×n, tol

Initial guess: Ṽ , W̃ ∈ Rn×k
output: Approximation spaces: Ṽ opt, W̃ opt ∈ Rn×k satisfying necessary

conditions forH2-optimality

while Change in eigenvalues of Ã larger than tol do
1 Update guess Ã = (W̃T Ṽ )−1W̃TAṼ , Ñ1 = (W̃T Ṽ )−1W̃TN1Ṽ , . . . ,

Ñm = (W̃T Ṽ )−1W̃TNmṼ , B̃ = (W̃T Ṽ )−1W̃TB, C̃ = CṼ
2 Decompose RΛ̃R−1 = Ã

3 Compute B̂ = R−1B̃, Ĉ = C̃R, N̂1 = R−1Ñ1R, . . . , N̂m = R−1ÑmR

4 Solve Ṽ Λ̃ +AṼ +
∑m
i=1NiṼ N̂

T
i +BB̂T = 0 for Ṽ

5 Solve W̃ Λ̃ +AT W̃ +
∑m
i=1N

T
i W̃ N̂i + CT Ĉ = 0 for W̃

6 Orthogonalize Ṽ = orth(Ṽ ), W̃ = orth(W̃ )

return Ṽ opt = Ṽ , W̃ opt = W̃

To establish the connection we introduce the following generalizations of the operator
M:

M̃ : Rn×k → Rn×k, M̃(X) := −AX −XÂT −
m∑
i=1

NiXN̂
T
i ,

M̂ : Rk×k → Rk×k, M̂(X) := −ÂX −XÂT −
m∑
i=1

N̂iXN̂
T
i ,

where Â = V TAV, N̂i = V TNiV for i = 1, . . . ,m, and V ∈ Rn×k is orthogonal. Our
first result is concerned with the invertibility of the operators M̃ and M̂, respectively.
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Proposition C.3.4. If σ(M) = −σ(L +Π) ⊂ C+, then σ(M̃) ⊂ C+ and σ(M̂) ⊂ C+.

Proof. Note that σ(M̃) is determined by the eigenvalues of the matrix

M̃ := −I ⊗A− Â⊗ I −
m∑
i=1

N̂i ⊗Ni. (C.15)

Similarly, we obtain σ(M) by computing the eigenvalues of the matrix

M := −I ⊗A−A⊗ I −
m∑
i=1

Ni ⊗Ni. (C.16)

SinceA andNi are assumed to be symmetric, we conclude that M = MT � 0. Let us then
define the orthogonal matrix V = V ⊗ I . It follows that M̃ = VTMV and, consequently,
M̃ = M̃T � 0. A similar argument with V = V ⊗ V can be applied to show the second
assertion.

Given a reduced bilinear system, we naturally obtain an approximate solution to the
generalized Lyapunov equation. Moreover, the error with respect to theM-inner product
is given by theH2-norms of the original and reduced system, respectively.

Proposition C.3.5. Let Σ denote a bilinear system (C.8) and let A = AT ≺ 0, Ni = NT
i

for i = 1, . . . ,m, and B = CT . Assume that ρ(L −1 Π) < 1. Given an orthogonal
V ∈ Rn×k, k < n, define Σ̂, the reduced bilinear system (C.14), via Â = V TAV, N̂i =
V TNiV and B̂ = V TB = ĈT . Let X be the solution toM(X) = BBT , and let X̂ be
the solution to M̂(X̂) = B̂B̂T . Then

‖X − V X̂V T ‖2M = ‖Σ‖2H2
− ‖Σ̂‖2H2

.

Proof. By assumption it holds thatM and M̂ are invertible and the controllability Grami-
ans X and X̂ exist. We observe the relations ‖X‖2M = Tr(XBBT ) = ‖Σ‖2H2

and
〈V X̂V T , X〉M = Tr(V X̂V TBBT ) = ‖Σ̂‖2H2

. Moreover, for the reduced system we
obtain

M̂(X̂) = −V T (AV X̂V T + V X̂V TA+
m∑
i=1

NiV X̂V
TNi)V = V TM(V X̂V T )V,

which implies that ‖V X̂V T ‖2M = Tr(X̂M̂(X̂)) = ‖Σ̂‖2H2
. Hence, we obtain

‖X − V X̂V T ‖2M = ‖X‖2M + ‖V X̂V T ‖2M − 2〈V X̂V T , X〉M = ‖Σ‖2H2
− ‖Σ̂‖2H2

.

Extending the results from [7], we obtain a lower bound for the previous terms by the
H2-norm of the error system Σ− Σ̂.
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Proposition C.3.6. Let Σ denote a bilinear system (C.8) and let A = AT ≺ 0, Ni = NT
i

for i = 1, . . . ,m, and B = CT . Assume that ρ(L −1 Π) < 1. Given an orthogonal
V ∈ Rn×k, k < n, define Σ̂, the reduced bilinear system (C.14), via Â = V TAV, N̂i =
V TNiV and B̂ = V TB = ĈT . Then, it holds

‖Σ− Σ̂‖2H2
≤ ‖Σ‖2H2

− ‖Σ̂‖2H2
,

with equality if Σ̂ is locallyH2-optimal.

Proof. The proof follows by arguments similar to those used in [7, Lemma 3.1]. By defi-
nition of theH2-norm for bilinear systems

‖Σ− Σ̂‖2H2
= Tr(

[
BT −B̂T

]
Xe

[
B

−B̂

]
),

where Xe =

[
X Y

Y T X̂

]
is the solution of

[
A 0

0 Â

]
Xe +Xe

[
A 0

0 Â

]
+

m∑
i=1

[
Ni 0

0 N̂i

]
Xe

[
Ni 0

0 N̂i

]
+

[
B

B̂

] [
BT B̂T

]
= 0.

Analyzing the block structure of Xe, adding and subtracting ‖Σ̂‖2H2
= Tr(B̂T X̂B̂), we

find the equivalent expression

‖Σ− Σ̂‖2H2
= ‖Σ‖2H2

− ‖Σ̂‖2H2
− 2

(
Tr(BTY B̂)− Tr(B̂T X̂B̂)

)
.

We claim that Tr(BTY B̂)−Tr(B̂T X̂B̂) ≥ 0 which then shows the first assertion. In fact,
Y and X̂ are the solutions of M̃(Y ) = BB̂T and M̂(X̂) = B̂B̂T . With the operators
introduced in (C.15) and (C.16), we obtain

Tr(BTY B̂)− Tr(B̂T X̂B̂) = b̃T vec(Y )− b̂T vec(X̂) = b̃TM̃−1b̃T − b̂TM̂−1b̂

= b̃T
(
M̃−1 −V(VTM̃V)−1VT

)
b̃,

where b̃ = vec(BB̂T ) and b̂ = vec(B̂B̂T ). As in [7, Lemma 3.1], it follows that the

previous expression contains the Schur complement of M̃−1 in S =

[
VTM̃V VT

V M̃−1

]
which can be shown to be positive semidefinite. We omit the details and refer to [7].

Assume now that Σ̂ is locallyH2-optimal. From [41], we have the following first-order
necessary optimality conditions

Y TZ + X̂Ẑ = 0, ZTNiY + X̂N̂iẐ = 0, i = 1, . . . ,m,

ZTB + ẐB̂ = 0, CY + ĈX̂ = 0,

165



PAPER C

where Y, X̂ are as before and Z, Ẑ satisfy

ATZ + ZÂ+
m∑
i=1

NT
i ZN̂i − CT Ĉ = 0, ÂT Ẑ + ẐÂ+

m∑
i=1

N̂T
i ẐN̂i + ĈT Ĉ = 0.

From the symmetry of A, Â,Ni and N̂i as well as the fact that B = CT and B̂ = ĈT , we
conclude that Ẑ = X̂ and Z = −Y . Hence, from the optimality conditions, we obtain

0 = ZTB + ẐB̂ = −Y TB + X̂B̂

which in particular implies that

Tr(BTY B̂)− Tr(B̂T X̂B̂) = Tr(B̂T (Y TB − X̂B̂)) = 0.

This shows the second assertion.

As a consequence of Propositions C.3.5 and C.3.6, we obtain the following result.

Theorem C.3.7. Let Σ denote a bilinear system (C.8) and let A = AT ≺ 0, Ni = NT
i

for i = 1, . . . ,m and B = CT . Assume that ρ(L −1 Π) < 1. Given an orthogonal
V ∈ Rn×k, k < n, define Σ̂, the reduced bilinear system (C.14), via Â = V TAV, N̂i =

V TNiV and B̂ = V TB = ĈT . Assume that X̂ solves M̂(X̂) = B̂B̂T . If Σ̂ is locally
H2-optimal, then V X̂V T is locally optimal with respect to theM-norm.

C.3.3 Equivalence of ALS and rank-1 BIRKA

So far we have shown that a subspace producing a locally H2-optimal model reduction is
also a subspace for which the Galerkin approximation is locally optimal in theM-norm.
In this part we, algorithmically, establish an equivalence between BIRKA and ALS. More
precisely, for the symmetric case the equivalence is between BIRKA applied with the target
model reduction subspace of dimension 1 for (C.8), and ALS applied to (C.1). The proof
is based on the following lemmas.

Lemma C.3.8. Consider using BIRKA (Algorithm C.2) with k = 1, i.e., both the initial
guesses and the output are vectors. Then Ã ∈ R is a scalar and hence we can take Λ̃ = Ã
and R = 1 in Step 2. Thus, B̂ = B̃, Ĉ = C̃, N̂1 = Ñ1, . . . , N̂m = Ñm, and hence
Steps 2–3 are redundant. Moreover, since Ṽ and W̃ are vectors, Step 6, is redundant.

Proof. The result follows from direct computation.

When speaking about redundant steps and operations we mean that the entities as-
signed in that step are exactly equal to another, existing, entity. In such a situation the
algorithm can be rewritten, by simply changing the notation, in a way that skips the redun-
dant step and still produces the same result.
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Lemma C.3.9. Consider the symmetric generalized Lyapunov equation (C.7) and let
v, w ∈ Rn be two given vectors. Let vBIRKA, wBIRKA ∈ Rn be the approximations ob-
tained by applying BIRKA (Algorithm C.2) to (C.1) with C = BT and initial guesses v
and w. If v = w, then vBIRKA = wBIRKA.

Proof. By induction it suffices to show that if Ṽ = W̃ at the beginning of a loop, the same
holds at the end of the loop. Thus, assume Ṽ = W̃ . Then Ñi = (W̃T Ṽ )−1W̃TNiṼ =
Ṽ TNiṼ /‖V ‖2 = Ṽ TNT

i Ṽ /‖V ‖2 = N̂T
i for i = 1, . . . ,m, and C̃ = CṼ = BT W̃ =

B̃T . By Lemma C.3.8 we do not need to consider Steps 2–3. We can now conclude that
Step 4 and Step 5 are equal, and thus at the end of the iteration we still have Ṽ = W̃ .

Lemma C.3.10. Consider the symmetric generalized Lyapunov equation (C.7) and let
v, w ∈ Rn be two given vectors. Let vALS, wALS ∈ Rn be the approximations obtained
by applying the ALS algorithm (Algorithm C.1) to (C.1) with initial guesses v and w. If
v = w, then vALS = wALS.

Proof. Similar to the proof of Lemma C.3.9 it is enough to show that if v = w at the
beginning of a loop then it also holds at the end of the loop. Hence, we assume that v = w.
Then by direct calculations Â1 = Â2. Moreover, by assumption Rk = RTk . Thus, Step 3
and Step 6 are equal, and hence at the end of the iteration we still have that v = w.

Theorem C.3.11. Consider the symmetric generalized Lyapunov equation (C.7) and let
v ∈ Rn be a given vector. Let vBIRKA ∈ Rn be the approximation obtained by applying
BIRKA (Algorithm C.2) to (C.1) withC = BT and initial guess v. Moreover, let vALS ∈ Rn
be the approximation obtained by applying the ALS algorithm (Algorithm C.1) to (C.1) with
initial guess v. Then vBIRKA = vALS.

Proof. First, Lemma C.3.9 and Lemma C.3.10 makes it reasonable to assess the algorithms
with only a single initial guess as well as a single output. Moreover, Step 5 in BIRKA as
well as Steps 2–4 in ALS are redundant. Furthermore, it follows from Lemma C.3.8 that in
this situation Steps 2, 3, and 6 of BIRKA are also redundant. Hence, we need to compare
the procedure consisting of Steps 1 and 4 from BIRKA, with the procedure consisting
of Steps 1, 5, and 6 from ALS. It can be observed that the computations are equivalent
and thus the asserted equality holds if they stop after an equal amount of iterations. We
hence consider the stopping criteria and note that they are the same, since (vTAT v +
vTAv)/2‖v‖2 = vTAv/‖v‖2 = Ã ∈ R.

Corollary C.3.12. Theorem C.3.2 is applicable with ALS changed to BIRKA, using sub-
spaces of dimension 1.

Remark C.3.13. Note that ALS can be generalized such that the optimization is computing
rank-` corrections, see [25, Remark 2.2]. With similar arguments as above, one can show
that for symmetric systems this can equivalently be achieved by BIRKA. From a theoretical
point of view, this will yield more accurate approximations. However, the computational
complexity increases quickly since each ALS or BIRKA step then requires solving a gener-
alized Sylvester equation of dimension n× `.
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C.4 Fixed-point iteration and approximativeM-norm minimization

In the previous section we showed that the ALS-based iteration (C.11) locally minimizes
the error in theM-norm with rank-1 updates. In contrast we here show that the fixed-point
iteration minimizes an upper bound for the M-norm, but with no rank constraint on the
minimizer.

Recall the fixed-point iteration for the generalized Lyapunov equation (C.1),

L (X̂k+1) = −Π(X̂k)−BBT , k = 0, 1, . . . , (C.17)

with X̂0 = 0. Under the assumption that ρ(L −1 Π) < 1 the iteration is a convergent
splitting and has been presented in, e.g., [12, Equation (12)], [41, Equation (12)], and [37,
Equation (4)]. The fixed-point iteration is a residual-based iteration since (C.17) is known
to be equivalent to

X̂k+1 = X̂k −L −1(Rk), k = 0, 1, . . . , (C.18)

with X̂0 = 0. To relate the fixed-point iteration to theM-norm minimization problem we
consider the problem

min
∆

∆=∆T�0

‖X − X̂k −∆‖2M.

The minimization is restricted to symmetric positive semidefinite matrices since we know
that the solution X = XT � 0. Hence, it is desired to have that if X̂k = X̂T

k � 0,
then the new iterate X̂k+1 = X̂k + ∆ also fulfills X̂k+1 = X̂T

k+1 � 0; specifically
then X̂k+1 � X̂k. Proposition C.2.3 gives us the solution in just one step. However, the
computation is as difficult as the original problem and hence the goal is to minimize an
upper bound on the error. As before we disregard the constant term ‖X − X̂k‖2M in the
minimization and consider

min
∆

∆=∆T�0

〈∆,∆〉M − 2 Tr(∆TRk) = min
∆

∆=∆T�0

Tr(∆T (−L (∆)− 2Rk)−∆TΠ(∆))

≤ min
∆

∆=∆T�0

Tr(∆T (−L (∆)− 2Rk)),

where the inequality is a consequence of the linearity of the trace and the positive semidef-
initeness of ∆T and Π(∆). Hence, the trace is non-negative [31]. The last expression is
minimized by ∆ = −L −1(Rk), if Rk is symmetric and positive definite. The latter is
asserted in the following theorem.

Theorem C.4.1. Consider the symmetric generalized Lyapunov equation (C.7) with the
additional assumptions that A ≺ 0 and ρ(L −1 Π) < 1. Moreover, consider the sequence
of approximations constructed by (C.18) where Rk is the residual associated with X̂k.
Then X̂k = X̂T

k � 0 andRk = RTk � 0, for all k ≥ 0.
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Proof. The proof is by induction and similar to that of Theorem C.3.2. It holds that X0 =
XT

0 � 0 and R0 = RT0 � 0. Now assume that this is the case for some k. Then
∆ = −L −1(Rk) is symmetric and positive semidefinite, and hence X̂k+1 is symmetric
and positive semidefinite. Moreover, since X̂k+1 and the operators in (C.1) are symmetric
it follows that Rk+1 is symmetric. Thus, what is left to show is Rk+1 � 0, which is true
if and only if yTRk+1y ≥ 0 for all y ∈ Rn. Hence, take an arbitrary y ∈ Rn and consider

yTRk+1y = yTRky + yT (L (∆) + Π (∆)) y = yT (Π (∆)) y ≥ 0.

The last inequality holds since ∆ is symmetric and positive semidefinite and Π is a sym-
metric operator.

Corollary C.4.2. The fixed-point iteration (C.17) produces an increasing sequence of ap-
proximations 0 = X̂0 � X̂1 � · · · � X .

Remark C.4.3. One could consider creating a subspace iteration from (C.18), by com-
puting a few singular vectors of L −1(Rk) and adding these to the basis. The method
seems to have nice convergence properties per iteration in the symmetric case, but not in
the non-symmetric case. However, the (naive) computations are prohibitively expensive.
See [37] for a computationally more efficient way of exploiting the fixed-point iteration.

C.5 A residual-based rational Krylov generalization

A viable technique for designing iterative methods for the generalized Lyapunov equa-
tion seems to be working with the residual; see the discussion in connection to Propo-
sition C.2.3, and in Sections C.3 and C.4. In [25, Section 4] it is suggested that, so
called, preconditioned residuals can be used to expand the search space. It is further
suggested that one such preconditioner could be a one-step-ADI preconditioner P−1

ADI =
(A − σI)−1 ⊗ (A − σI)−1, for a suitable choice of the shift. We present a method along
those lines, and show that it can be seen as a generalization of the rational Krylov subspace
method.

C.5.1 Suggested search space

For the generalized Lyapunov equation (C.1), we suggest the following search space:

Kk := range{B, (A− σ1I)−1u0, (A− σ2I)−1u1, . . . , (A− σkI)−1uk−1}, (C.19)

where uk−1 is the most dominant left singular vector of the Galerkin residual Rk−1 of
Kk−1, and {σ`}k`=1 is a sequence of shifts that needs to be chosen. In analogy with the dis-
cussion in [15], we suggest that the shifts are chosen according to the largest approximation
error along the current direction. More precisely,

σk := arg maxσ∈[σmin,σmax]

(∥∥∥uk−1 − (A− σI)Vk−1(Âk−1 − σI)−1 VTk−1 uk−1

∥∥∥) ,
(C.20)
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where Vk−1 is a matrix with orthogonal columns containing a basis of Kk−1, the matrix
Âk−1 = VTk−1AVk−1, and [σmin, σmax] is a search interval. Typically for a stable matrix
A we let σmin be the negative real part of the eigenvalue of A with largest real part (closest
to 0). Correspondingly we let σmax the negative real part of the eigenvalue of A with
smallest real part. Equations (C.19) and (C.20) can be straightforwardly incorporated in
a Galerkin method for the generalized Lyapunov equation; the pseudocode is presented in
Algorithm C.3.

Algorithm C.3: Residual-based rational-Krylov-type solver
input : A,N1, . . . , Nm ∈ Rn×n B ∈ Rn×r, tol
output: X̂

1 V0 = ∅, v1 = orth(B)
for k = 1, 2, . . . until convergence do

2 Vk =
[
Vk−1, vk

]
3 Compute the projected matrices: Âk = VTk AVk, and N̂i,k = VTk Ni Vk for

i = 1, 2, . . . ,m, and B̂k = VTk B
4 Solve the projected problem:

ÂkYk + YkÂ
T
k +

∑m
i=1 N̂i,kYjN̂

T
i,k + B̂kB̂

T
k = 0

5 Construct the (Galerkin) approximation: X̂k = Vk Yk VTk
6 Compute the residual: Rk = AX̂k + X̂kA

T +
∑m
i=1NiX̂kN

T
i +BBT

7 if ‖Rk‖ < tol then
Break

8 uk ← the most dominant left singular vector ofRk
9 Select shift σk+1 according to (C.20)

10 vk+1 = (A− σk+1I)−1uk
11 vk+1 ← orthogonalize vk+1 with respect to Vk
12 return X̂ = X̂k

Remark C.5.1. In practice the computation of the left singular vector can typically be
done approximatively in an iterative fashion. This would also remove the need of comput-
ing the approximative solution X̂k in Step 5 and the residual in Step 6 explicitly, since the
matrix vector product can be implemented as Rkv = AVk Yk VTk v + Vk Yk VTk AT v +∑m
i=1Ni Vk Yk V

T
k N

T
i v + BBT v. However, such computations may introduce inexact-

ness which can present a difficulty in a subspace method.

Remark C.5.2. Heuristically the dynamic shift-search in Step 9 can be changed to an
analogue of [15, (2.4) and (2.2)]. We suggest

σk := arg maxσ∈∂S
1

|τk−1(z)|
, (C.21)
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where S approximates the mirrored spectrum of A and ∂S is the boundary of S, and

τk−1(z) :=

∏dim(Kk−1)
j=1 z − λ(k−1)

j∏k−1
`=1 z − σ`

,

with λ(k−1)
j being the Ritz values of Âk−1. Typically S is approximated at each step using

the convex hull of the Ritz values of Âk−1. It has been observed efficient in experiments
since the maximization of (C.21) is computationally faster compared to (C.20). See Sec-
tion C.6 for a practical comparison of convergence properties.

Remark C.5.3. The steps 8–9 in Algorithm C.3 can be changed for a tangential-direction
approach according to [16]. One practical way, although a heuristic, is to do the shift
search according to either (C.20) or (C.21), and then compute the principal direction(s)
according to [16, Section 3], i.e., through a singular value decomposition ofRk−1− (A−
σkI)Vk−1(Âk−1 − σkI)−1 VTk−1Rk−1. It has been observed in experiments that such
an approach tends to speed up the convergence, in terms of computation time, since the
computation of the residual is costly.

Remark C.5.4. It is (sometimes) desirable to allow for complex conjugate shifts σk and
σ̄k, although, for reasons of computations and model interpretation one wants to keep the
basis real. This goal is achievable using the same idea as in [35]. More precisely, one can
utilize the relation

range
{

(A− σkI)−1uk−1, (A− σ̄kI)−1uk−1

}
=

range
{

Re((A− σkI)−1uk−1), Im((A− σkI)−1uk−1)
}
.

Although it requires two shifts to be used together with the vector uk−1.

C.5.2 Analogies to the linear case

To give further insight to the suggested subspace in (C.19), we draw parallels with the
(standard) rational Krylov subspace for the (standard) Lyapunov equation,

L (X) +BBT = 0, (C.22)

where L is defined by (C.2) and B ∈ Rn×r. The idea is to show that the suggested
space (C.19), reduces to something well known in this case. As a technical note we observe
that Definitions C.2.1 and C.2.2 are analogous for the (standard) Lyapunov equation (C.22),
but with Π = 0. The reasoning in this section can be compared to that of [3, Section 2].
To prove the main result of this section we need the following lemma.

Lemma C.5.5. Let A ∈ Rn×n and σa ∈ R be any scalar such that (A − σaI) is
nonsingular. Moreover, let V ∈ Rn×k, k ≤ n, be orthogonal, i.e., VT V = I , and
let R ∈ Rn×n be such that range((A − σaI)−1R) ⊆ range(V). Then R = (A −
σaI)V(VT AV −σaI)−1 VT R.
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Proof. We introduce the notation S := (A − σaI) and Ŝ := (V TAV − σaI). To prove
the statement we consider the right-hand side of the asserted equality,

S V Ŝ−1 VT R = S V Ŝ−1 VT SS−1R = S V Ŝ−1 VT S V VT S−1R,

where the second equality follows from the assumption range(S−1R) ⊆ range(V). By
observing that Ŝ−1 VT S V = I the expression can be further simplified as

S V Ŝ−1 VT R = S V VT S−1R = SS−1R = R,

where, again, the second equality follows from range(S−1R) ⊆ range(V).

Theorem C.5.6. Let A ∈ Rn×n, B ∈ Rn×r, and let {σ`}k+1
`=1 be a sequence of shifts such

that A− σ`I is nonsingular for ` = 1, . . . , k+ 1. Define the space Kk := range{B, (A−
σ1I)−1B, . . . ,

∏k
`=1(A − σ`I)−1B}, and Kk+1 analogously. Let Vk be an orthogonal

basis of Kk, Vk+1 an orthogonal basis of Kk+1, and let vk+1 ∈ Rn×r be such that
Vk+1 =

[
Vk, vk+1

]
.1 Moreover, let Rk ∈ Rn×n be the Galerkin residual with respect

to (C.22). Then each column of (A − σk+1I)−1Rk is in range(Vk+1), i.e., range((A −
σk+1I)−1Rk) ⊆ range(Vk+1). Furthermore, if range((A− σk+1I)−1Rk) ⊆ range(Vk),
thenRk = 0.

Proof. We introduce the notation Sk+1 := (A− σk+1I) and Ŝk+1 := (V TAV − σk+1I).
From existing results on rational Krylov subspaces, see, e.g., [27, Proposition 2.2],

there exists α ∈ Rr×n such that

Rk = AVkYkV
T
k + VkYkV

T
k A

T +BBT

= σk+1vk+1α− (I − VkVk)Avk+1α+ VkTkYkV
T
k + VkYkV

T
k A

T + VkV
T
k BB

T

= −Sk+1vk+1α+ Vkβ

for a suitable β ∈ R(k+1)r×n. This shows the first claim.
To prove the second claim we assume that range(S−1

k+1Rk) ⊆ Kk = range(Vk).
Under this assumption we can use Lemma C.5.5 and the fact thatRk = RTk to get

Rk = Sk+1 Vk Ŝ−1
k+1 V

T
k Rk = Sk+1 Vk Ŝ−1

k+1 V
T
k Rk Vk Ŝ−1

k+1 V
T
k Sk+1 = 0,

sinceRk is the Galerkin residual and thus VTk Rk Vk = 0.

Remark C.5.7. The interpretation of Theorem C.5.6 is easiest in the case when B = b ∈
Rn. Consider the two spaces Kk := range{b, (A − σ1I)−1b, . . . ,

∏k
`=1(A − σ`I)−1b}

and K̂k := range{R−1, (A − σ1I)−1R0, . . . , (A − σkI)−1Rk−1}, where R−1 = b and
Rj is the Galerkin residual in space Kj , with j = 0, 1, . . . , k − 1 . Then for all relevant
cases, i.e., Rj 6= 0 for j = −1, 0, . . . , k − 1, we have that Kk = K̂k. In this sense the
suggested subspace in (C.19) can be seen as a natural generalization of a rational Krylov
subspace for linear matrix equations.

1Here we have, implicitly, assumed that the dimension of the Kk+1 is n× (k+ 2)r, i.e., all the columns in
the definition of the space are linearly independent.
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C.6 Numerical examples

We now numerically compare different methods discussed in the paper. All algorithms
are treated in a subspace fashion2 and we compare practically achieved approximation
properties as a function of subspace dimension. Since the paper focuses on the symmetric
problem we use Galerkin projection in the tested methods, except BIRKA. However, to
(numerically) investigate the domain of application we test the methods on problems with
varying degree of symmetry.

For small and moderate sized problems there are algorithms for computing the full
solution, see [24, Algorithm 2], cf. [41, equation (12)]. Although costly, this nevertheless
allows for inspection of the relative error, i.e.,

‖X − X̂k‖/‖X‖.

Moreover, it also allows comparison with the (in the Frobenius norm) optimal low-rank
approximation based on the SVD.

We summarize some of the implementation details. Specifically, BIRKA is imple-
mented as described in Algorithm C.2, with a maximum allowed number of iterations equal
to 100. Convergence tolerance is implemented as relative norm difference of the vector of
sorted eigenvalues and was set to 10−3. Each subspace is computed independently from a
random initial guess. We emphasize that the method based on ALS is a subspace method,
and not an iteratively updated method as described in (C.11). Because of the structure
of the generalized Lyapunov equation, the solution is symmetric even if the coefficient
matrices are not, we use a symmetric version of ALS even for the non-symmetric exam-
ples. More precisely, a symmetrized version of Algorithm C.1, cf. Lemma C.3.10, was
used as an inner iteration, the resulting vector was used in an outer iteration to expand the
search space, and the approximation was found using Galerkin projection. The maximum
allowed number of iterations in ALS (inner iteration) was set to 20, and the tolerance to
10−2. With reference to [25] we note that preconditioned residuals were not used, although
it may accelerate convergence. Regarding the rational-Krylov-type methods we compare
the following methods, which we give short labels for the legends further down:

• A: Kk as in (C.19), according to Algorithm C.3

• B: Algorithm C.3 but with tangential directions according to Remark C.5.3, though
with shifts according to (C.20)

• C: Algorithm C.3 but with shifts according to (C.21)

• D: Algorithm C.3 but with tangential directions according to Remark C.5.3 and shifts
according to (C.21)

• E: Standard rational Krylov. More precisely, similar to Algorithm C.3, but instead
of using uk−1 we use the right-hand side B in both (C.19) and (C.20)

2The technique of turning an iterative method, such as, e.g., ALS, into a subspace method is known as
Galerkin acceleration. The idea is nicely explained in [25, Section 3].
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• F: Kk as in (C.19), but with on-beforehand-prescribed shifts given as the recycling
of mirrored eigenvalues from a size-10-BIRKA (convergence tolerance set to 10−3).
Mirrored eigenvalues are potentially complex, with positive real part, and taken in
ascending order according to the real parts.

For methods C, D, and F the shifts may be complex-valued, and the complex arithmetic
is avoided by creating the space in accordance with Remark C.5.4. For methods A–E,
the shift-search-boundaries were set to σmax = −1.01 · minλ∈σ(A) λ and σmin = −0.99 ·
maxλ∈σ(A) λ, as to slightly enlarge the region. For methods A, B, and E, the shifts are
taken as approximations to (C.20). The approximation is computed by discretizing the in-
terval [σmin, σmax] in 30 equidistant points and comparing the value of the target function.
Orthogonalization of the basis is implemented using MATLAB built-in QR factorization
and keeping vectors only if the corresponding diagonal element in R is large enough. Im-
plementations for the methods A-F are available online.3 The simulations were done in
MATLAB R2018a (9.4.0.813654) on a computer with four 1.6 GHz processors and 16 GB
of RAM.

We test the algorithms on three different problems. All examples are bilinear control
systems and we approximate the associated controllability Gramian, as in (C.9). The ex-
amples all have stable Lyapunov operators. The first example is symmetric, the second is
non-symmetric but symmetrizable, and the third example is non-symmetric.

C.6.1 Heat equation

The first example is motivated by an optimal control problem for selective cooling of steel
profiles, see [17]. In this example, the state variable w models the evolution of a tempera-
ture and is described by a two-dimensional heat equation,

∂

∂t
w(x, y, t) = ∆w(x, y, t) (x, y, t) ∈ (0, 1)× (0, 1)× (0, T ),

where a control u(t) enters bilinearly from the left through a Robin condition,

− ∂

∂x
w(0, y, t) = 0.5(w(0, y, t)− 1)u(t) (y, t) ∈ (0, 1)× (0, T ).

The control can be interpreted as the spraying intensity of a cooling fluid. The other spatial
boundaries satisfy homogeneous Dirichlet conditions, and at t = 0 an initial temperature
profile is specified. The equation is discretized in space using centered finite difference,
which yields a bilinear system with A ∈ R5041×5041, B ∈ R5041, m = 1, and N1 = N ∈
R5041×5041. It can be further noted that, A = AT ≺ 0 and N = NT , and hence the theory
ofH2-optimality and the definition of theM-norm is applicable.

We compare different methods discussed in the paper, both the relative residual norm
and the relative error. For readability the plots have been split in different figures. Hence,
in Figure C.1 we compare across different classes of methods, and in Figure C.2 we com-
pare between different flavors the rational-Krylov-type methods. It can be observed, see

3https://people.kth.se/~eringh/software/res_rat_Kry_type/

174

https://people.kth.se/~eringh/software/res_rat_Kry_type/


Residual iterations for generalized Lyapunov equation

1 10 20 30 40 50 60

100

10−2

10−4

10−6

10−8

10−10

Space dimension

R
el

at
iv

e
re

si
du

al
no

rm

A
ALS

BIRKA
SVD

1 10 20 30 40 50 60

100

10−2

10−4

10−6

10−8

10−10

Space dimension

R
el

at
iv

e
er

ro
r(

Fr
o-

no
rm

)

A
ALS

BIRKA
SVD

Figure C.1: Cross-algorithm comparison for the heat equation. Relative residual norm
(left), relative error in Frobenius norm (right).
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Figure C.2: Rational-Krylov-type method comparison for the heat equation. Relative resid-
ual norm (left), relative error in Frobenius norm (right). Compare with Figure C.1 as the
lines for method A are the same in the two figures. For a description of the labels, see the
beginning of this section.
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Figure C.3: The cross-algorithm comparison (left) and rational-Krylov-type methods
(right) for the heat equation. The relative error is measured in the M-norm. The lines
for method A are the same in the two plots.

Figure C.1, that for this example BIRKA has extremely good performance, even outper-
forming the SVD in relative residual norm. Nevertheless, the larger BIRKA subspaces can
be rather costly to compute. In comparison ALS shows good performance compared to the
rational-Krylov-type subspace, and is rather cheap to compute. When comparing the dif-
ferent rational-Krylov-type methods, see Figure C.2, we see that standard rational-Krylov
(E) has the problem that the convergence stagnates. The methods A, C, and F have similar
performance. In comparison, B and D are only slightly worse in the error per subspace
dimension comparison but are practically sometimes faster to compute.

Since theM-norm is defined for this example we compare the relative error also in this
norm, see Figure C.3. The trend is similar as in the Frobenius norm, although in general
the error is smaller and BIRKA has best performance, even compared to the SVD.

C.6.2 1D Fokker–Planck

The second example is from quantum physics, where a one-dimensional Fokker–Planck
equation is used to describe the evolution of a probability density function, ρ, of a particle
affected by a potential. Parts of the potential can be manipulated by a so-called optical
tweezer, which constitutes the control. For further details of the problem see [22]. More
precisely we consider

∂

∂t
ρ(x, t) = ν

∂2

∂x2
ρ(x, t) +

∂

∂x

(
ρ(x, t)

∂

∂x
V (x, t)

)
(x, t) ∈ (−6, 6)× (0, T )

ρ(x, 0) = ρ0(x) x ∈ (−6, 6)

ν
∂

∂x
ρ(x, t) = −ρ(x, t)

∂

∂x
V (x, t) (x, t) ∈ {−6, 6} × (0, T ),
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Figure C.4: Cross-algorithm comparison for 1D Fokker–Planck equation. Relative residual
norm (left) and relative error (right).
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Figure C.5: Rational-Krylov-type method comparison for 1D Fokker–Planck equation.
Compare with Figure C.4 as the lines for method A are the same in the two figures. For a
description of the labels, see the beginning of this section.
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where the potential is V (x, t) = W (x)+α(x)u(t), with the ground (fixed) potential being
W (x) =

((
(0.5x2 − 15)x2 + 199

)
x2 + 28x+ 50

)
/200, and α(x) is an approximately

linear control shape function; for more details see [11]. In a weighted inner product, the
dynamics can be described by self-adjoint operators. However, here we employ an up-
winding type finite difference scheme with 5000 grid points, leading to a non-symmetric
system. As has been pointed out in [22], the system matrix A is not asymptotically stable
due to a simple zero eigenvalue associated with the stationary probability distribution. Us-
ing a projection-based decoupling, it is however possible to work with an asymptotically
stable system of dimension n = 4999. Similar to the first example, the control variable is a
scalar and, consequently, we only obtain a single bilinear coupling matrix N1 = N . Since
the system is non-symmetric, the operatorM is generally indefinite and hence we make
no comparisons in theM-norm.

The plots in Figures C.4 and C.5 are analogous to the plots in Figures C.1 and C.2
respectively. However, for this example the direct solver stagnated at a relative residual of
about 10−8, which can be seen in the stagnation of the SVD approximation in the left of
Figure C.4. As a result, the comparisons of relative error performance, the right of Fig-
ures C.4 and C.5, show an artificial stagnation. At a certain level the convergence stagnates
since it measures the discrepancy between the method approximations and the inexact ref-
erence solution, rather than the true error of the method approximations. Nevertheless we
believe the comparisons to be fair more or less up to to the point of stagnation, which
is justified by the relative residual plots showing similar behavior. However, the relative
residual indicates stagnation around 10−8 for the other methods as well, although not quite
as clear as for the SVD.

From Figure C.4 we see the BIRKA performs well for this example. However, the
subspaces of dimension 28 and 29 did not converge in a 100 iterations and hence for clarity
these are left out of the plots. This illustrates a drawback of the method. The performance
difference between ALS and the rational-Krylov-type method is slightly smaller compared
to the previous example. Among the rational-Krylov-type methods A, B, and F seems to
have similar performance, whereas C is clearly worse. Method E is competitive for about
10 iterations and then the convergence is significantly slower. However, method D ends up
with an insufficient subspace.

C.6.3 Burgers’ equation

In the third example we consider an approximation to the one-dimensional viscous Burg-
ers’ equation

∂

∂t
w(x, t) + w(x, t)

∂

∂x
w(x, t) = ν

∂2

∂x2
w(x, t) (x, t) ∈ (0, 1)× (0, T )

w(x, 0) = w0(x) x ∈ (0, 1)

where ν = 0.1 is constant. The spatial boundary conditions are Dirichlet conditions. More
specifically, w(1, t) = 0 and w(0, t) = u(t), where u(t) is an applied control input. The
solution w(x, t) can be interpreted as a velocity and the equation occurs in, e.g., modeling
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Figure C.6: Cross-algorithm comparison for Burgers’ equation. Relative residual norm
(left) and relative error (right).
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Figure C.7: Rational-Krylov-type method comparison for Burgers’ equation. Compare
with Figure C.6 as the lines for method A are the same in the two figures. For a description
of the labels, see the beginning of this section.
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of gas or traffic flow. The problem is discretized in space using centered finite differences
with 71 uniformly distributed grid points. Using a second order Carleman bilinearization,
we obtain a bilinear control system approximation with A,N ∈ R5112×5112 and B ∈
R5112; see [10] for further details. Note that in this case A is an asymptotically stable but
non-symmetric matrix. To ensure the positive semidefiniteness of the Gramian, we scale
the control matrices N and B with a factor α = 0.25. We emphasize that the control
law is scaled proportionally with 1

α such that the dynamics remain unchanged, for further
discussion see [9, Section 3.4].

The comparison is similar to the previous examples and the Figures C.6 and C.7 are
analogous to the respective Figures C.1 and C.2. The problem is difficult in the sense that
the singular values of the solution decay slowly. Moreover, the direct method stagnates at
a relative residual norm of 5 ·10−6. This is, however, less visible compared to the previous
example since in general the convergence is slower.

For this example the performance of BIRKA is not significantly better than other meth-
ods, which is not surprising since the theoretical justifications for the method are not valid.
ALS shows faster convergence in relative residual norm but slower convergence in rela-
tive error, as well as indications of stagnation. However, the theoretical justifications for
ALS are also not valid for this example and the result is in line with the results in [25].
Regarding the rational-Krylov-type methods it seems as if method D and B has the best
performance. However, method E does not provide a useful subspace for this example.

C.6.4 Execution time experiment

We conclude the numerical examples with a small experiment comparing the execution
time of different methods considered. The problems are the same as above, i.e., the heat
equation, the 1D Fokker–Planck equation, and the Burger’s equation. For all these we
generate a BIRKA subspace of dimension 30, an ALS subspace of dimension 60, and a
subspace of type A of dimension 60. The approximation properties of these spaces are
similar for the heat equation, see Figure C.1. The cumulative CPU time as a function
of iteration count, in the respective method, is plotted in Figure C.8. Note that for ALS
and method A the iteration count corresponds to increasing the dimension of the subspace
with one, since the right-hand side is rank one. However, for BIRKA the dimension of
the subspace is fixed on beforehand and hence there is an irregular number of iterations,
corresponding to the convergence of the fixed-point problem rather than the size of the
subspace. It was, for example, mentioned above that the BIRKA iterations for subspaces
of dimension 28 and 29, for the Fokker–Planck equation, did not converge to the specified
tolerance in the allowed 100 iterations.

In this situation, and for the chosen parameters, BIRKA is faster for the heat equation,
and slower for the Fokker–Planck equation. In the case of the Burger’s equation it seems
as if BIRKA is faster. However, if we take the approximation properties into account we
find, by looking at Figure C.6, that a more fair comparison with method A is to consider
the latter only up to iteration 30. Moreover, fixing the subspace dimension, rather than the
tolerance, is (likely) advantageous for BIRKA.
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Figure C.8: Cumulative time as function of number of iterations. The plots are for the:
Heat equation (left), Fokker–Planck (middle), and Burgers’ equation (right).

C.7 Conclusions and outlooks

We have proposed a rational-Krylov-type subspace for solving the generalized Lyapunov
equation. Simulations indicate competitive performance, at least in the non-symmetric
case where optimality statements for the other methods are no longer valid. Simulations
show that methods A and F perform well for all three examples. The ALS iteration, as
well as results from the literature, cf. [1], seems to indicate that subspaces of the type (A−
σI −µNi)−1B could be useful. Although we have not been able to exploit this efficiently.
Another generalization of the rational Krylov subspace, for general linear matrix equations,
is presented in [32]. It is suggested to use subspaces of the type (A− σI)−1v, and (Ni −
σI)−1v, where v is a vector from the previous space. We see that more research is needed
to understand the theoretical aspects of the suggested, and related, spaces.

Common for all methods studied is that they use the current residual in the iterations.
Computing the residual can in itself be costly for a truly large scale problem, although
approximate dominant directions can be computed in an iterative fashion, resulting in an
inner–outer-type iteration. However, more research is needed to understand the conse-
quences of such inexact subspaces.
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Abstract

We investigate a technique to transform a linear two-parameter eigenvalue problem,
into a nonlinear eigenvalue problem (NEP). The transformation stems from an elimi-
nation of one of the equations in the two-parameter eigenvalue problem, by considering
it as a (standard) generalized eigenvalue problem. We characterize the equivalence be-
tween the original and the nonlinearized problem theoretically and show how to use the
transformation computationally. Special cases of the transformation can be interpreted
as a reversed companion linearization for polynomial eigenvalue problems, as well as a
reversed (less known) linearization technique for certain algebraic eigenvalue problems
with square-root terms. Moreover, by exploiting the structure of the NEP we present
algorithm specializations for NEP-methods, although the technique also allows general
solution methods for NEPs to be directly applied. The nonlinearization is illustrated
in examples and simulations, with focus on problems where the eliminated equation is
of much smaller size than the other two-parameter eigenvalue equation. This situation
arises naturally in domain decomposition techniques. A general error analysis is also
carried out under the assumption that a backward stable eigensolver is used to solve the
eliminated problem, leading to the conclusion that the error is benign in this situation.

Keywords: two-parameter eigenvalue problem, nonlinear eigenvalue problem, multipa-
rameter eigenvalue problem, iterative algorithms, implicit function theorem

D.1 Introduction

This paper concerns the two-parameter eigenvalue problem: Determine nontrivial quadru-
plets (λ, x, µ, y) ∈ C× Cn × C× Cm such that

0 = A1x+ λA2x+ µA3x (D.1a)
0 = B1y + λB2y + µB3y, (D.1b)
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where A1, A2, A3 ∈ Cn×n, and B1, B2, B3 ∈ Cm×m. More specifically, with nontrivial
we mean that the eigenvectors should be nonzero, i.e., y 6= 0 and x 6= 0. We denote
the corresponding functions A(λ, µ) := A1 + λA2 + µA3 and B(λ, µ) := B1 + λB2 +
µB3. This problem has been extensively studied in the literature, see, e.g., the fundamental
work of Atkinson [2], and the summary of recent developments below. We assume that
m� n and that A1, A2 and A3 are large and sparse matrices, although several theoretical
contributions of this paper are valid without this assumption.

The main idea of our approach can be described as follows. We view (D.1b) as a param-
eterized generalized linear eigenvalue problem, where λ is the parameter. Due to pertur-
bation theory for eigenvalue problems, there is a family of continuous functions {gi(λ)},
defined by the eigenvalues of (D.1b), where µ is the eigenvalue, of a generalized eigen-
value problem (GEP). More formally, for a fixed value of λ ∈ C the functions gi(λ) ∈ C
and φi(λ) ∈ Cm can be defined, as the solution to

0 = (B1 + λB2 + gi(λ)B3)φi(λ) (D.2a)
1 = cTφi(λ), (D.2b)

for a given vector c ∈ Cm. We explicitly introduced the normalization condition (D.2b),
to uniquely define a corresponding eigenvector. The condition (D.2b) is not a restriction of
generality except for the rare situation that the eigenvector is orthogonal to c. We prefer this
condition over the standard Euclidean normalization, since the right-hand side of (D.2b) is
an analytic function.

By insertion of µ = gi(λ) into (D.1a), we see that a solution to (D.1) will satisfy

M(λ)x = (A1 + λA2 + gi(λ)A3)x = 0. (D.3)

Note that we have now eliminated µ and (D.1b), at the cost of the introduction of a nonlin-
ear function into the eigenvalue problem. The problem M(λ)x = 0 is called a nonlinear
eigenvalue problem (NEP). In our setting it is rather a family of NEPs, since we have a
different nonlinearity for each function g1, . . . , gm. The study of NEPs is a mature field
within numerical linear algebra, and there are considerable theoretical results, as well as
algorithms and software for NEPs which aim to find a selection of solutions. Note that
the NEP-solvers in general only compute a subset of the eigenvalues and therefore our ap-
proach is mainly for situations where particular (λ, µ)-values are of interest, e.g., close to
a target.

We provide a theoretical characterization of the elimination procedure in Section D.2.
The characterization shows that the functions are locally analytic (and not necessarily en-
tire functions), everywhere except for certain points, which are explicitly described. Sec-
tion D.3 contains new methods for (D.1) derived from NEP-methods designed for prob-
lems with local analyticity. Analysis of the conditioning of the structured perturbations
corresponding to the elimination are provided in Section D.4. We provide software for
the simulations, both for MATLAB and for Julia [6]. The Julia software is implemented
using the data structures of the NEP-PACK software package [20], including adaption of
theory for how to compute derivatives and projections. This provides new ways to solve
(D.1), using the large number of NEP-solvers available in NEP-PACK. Some contributions
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are also converse, i.e., we provide insight to NEPs based on the equivalence with two-
parameter eigenvalue problems. For instance, in Sections D.2.2–D.2.3 we show how to
transform certain NEPs with square-root nonlinearities to two-parameter eigenvalue prob-
lems. This in turn (using the operator determinants described below) allows us to transform
the problem to a standard generalized eigenvalue problem, similar to companion lineariza-
tion techniques for polynomial and rational eigenvalue problems.

We now summarize the NEP-results relevant for our approach. For a broad overview
see the summary papers [38, 30, 50, 10], as well as the benchmark collection [4], and
software packages with NEP-solvers [37, 12, 13, 20]. There are considerable theoretical
works available for the NEP, in particular for polynomial eigenvalue problems. Techniques
to transform polynomial NEPs to standard eigenvalue problems (known as linearization)
have been completely characterized in a number of works, e.g., [27, 28] and [33]. We
relate our approach to this type of linearization in Section D.2.2. In our derivation, we
make explicit use of the implicit function theorem applied to the NEP. This has been done
in the context of sensitivity analysis, leading to eigenvector free formulas for conditioning
[1]. There are a number of algorithms available for NEPs, of which many seem to be
applicable to (D.3). More specifically, we characterize the specialization of residual inverse
iteration [34], which forms the basis of more recent methods such as the nonlinear Arnoldi
method [49]. We also show how the infinite Arnoldi method [23] can be adapted to (D.3).

In Section D.5.2 we illustrate how two-parameter eigenvalue problems of this type can
arise by the separation of domains of a boundary value problem (BVP). The domains are
decoupled in a way that the discretization leads to a two-parameter eigenvalue problem.
In this context, the elimination corresponds to an elimination of one of the domains. The
elimination of an outer domain, in a way that directly leads to NEPs, by introduction of
artificial boundary conditions is the origin of several standard NEPs in the literature, e.g.,
[44] and the electromagnetic cavity model in [48].

Relevant results for two-parameter eigenvalue problems can be summarized as follows.
Many results for two-parameter eigenvalue problems are phrased in the more general set-
ting of multiparameter eigenvalue problems. There are a number of recent efficient algo-
rithms available, e.g., based on the Jacobi–Davidson approach [15, 17], including subspace
methods in [16]. A number of generalizations of inverse iteration are derived in [36]. Our
approach is based on an eigenvalue parameterization viewpoint. Eigenvalue parameteri-
zation and continuation techniques (but with an additional parameter) have been studied,
e.g., in [35].

One of the most fundamental properties of two-parameter eigenvalue problems is the
fact that solutions are given by the solution to a larger linear (generalized) eigenvalue
problem. This is also often used in the numerical algorithms mentioned above, and to our
knowledge first proposed as a numerical method in [40]. More precisely, we associate with
(D.1) the operator determinants

∆0 = B2 ⊗A3 −B3 ⊗A2 (D.4)
∆1 = B3 ⊗A1 −B1 ⊗A3 (D.5)
∆2 = B1 ⊗A2 −B2 ⊗A1, (D.6)
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where⊗ denotes the Kronecker product. The solutions to (D.1) are (under certain assump-
tions) equivalent to the solutions to the two generalized eigenvalue problems

∆1z = λ∆0z (D.7a)
∆2z = µ∆0z (D.7b)

where z = y ⊗ x. In practice, the application of a general purpose eigenvalue solver on
one of the GEPs in (D.7) yields an accurate solution for small systems. The Sylvester-
like structure of the operator determinants is exploited in [29] with applications in, e.g.,
detection of a Hopf bifurcation. The equivalence between (D.7) and (D.1) holds under
nonsingularity assumption; in particular the problem is singular if A3 and B3 both are
singular; A2 and B2 both are singular; A2 and A3 have intersecting null-spaces; or B2 and
B3 have intersecting null-spaces. See [2] for a precise characterization, and [24, 18] for
more recent formulations.

The following matrix is often used in theory for eigenvalue multiplicity and eigenvalue
conditioning, and will be needed throughout the paper. We denote

C0 :=

[
vHA2x vHA3x
wHB2y wHB3y

]
, (D.8)

where v and w are left eigenvectors associated with (D.1a) and (D.1b), respectively. In
particular, for an (algebraically) simple eigenvalue of the two-parameter eigenvalue prob-
lem (D.1), the matrix C0 is nonsingular; see [24, Lemma 3], [15, Lemma 1.1], and [18,
Lemma 1]. For a simple eigenvalue, the normwise condition number for the two-parameter
eigenvalue problem is expressed as a special induced matrix norm of C−1

0 , see [18, Sec-
tion 4].

D.2 Nonlinearization

D.2.1 Existence and equivalence

The elimination of the B-equation (D.1b) in the two-parameter eigenvalue problem can be
explicitly characterized as we describe next. Note that when λ is viewed as a parameter,
the second equation in the two-parameter eigenvalue problem is a GEP corresponding to
the pencil (−(B1 + λB2), B3):

−(B1 + λB2)y = µB3y. (D.9)

In the algorithms section, we will use GEP-eigensolvers to compute µ. In order to de-
scribe when this GEP leads to an analytic well-defined parameterization we introduce the
normalization cT y = 1 for theoretical purposes.

The idea is based on viewing the GEP (D.9) and the normalization condition as a set of
nonlinear equations in the variables y, λ and µ. Conditions on the existence of a parame-
terization is in our first result expressed in terms of the partial Jacobian, with respect to the
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variables y and µ, of this nonlinear function. The Jacobian is

J(λ, µ, y) :=

[
B(λ, µ) B3y
cT 0

]
. (D.10)

In the theorem that directly follows this lemma, we show how the singularity of the
Jacobian is directly related to the multiplicity of the eigenvalue of the GEP (D.9).

Lemma D.2.1 (Existence of implicit functions). Let λ ∈ C be given. Suppose the pencil
associated with the GEP (D.9) is regular. Let (µi, yi) ∈ C × Cm be an eigenpair of
the GEP normalized such that cT yi = 1. Moreover, assume that J(λ, µi, yi) as given by
(D.10) is nonsingular. Then, there exists a domain Ωi ⊂ C, and functions analytic in this
domain gi : Ωi → C and φi : Ωi → Cm such that

−(B1 + sB2)φi(s) = gi(s)B3φi(s), for all s ∈ Ωi,

where Ωi is a neighborhood of λ, and gi(λ) = µi, φi(λ) = yi.

Proof. Consider the analytic function f : Cm+2 → Cm+1 given by

f(λ, µ, y) :=

[
B(λ, µ)y
cT y − 1

]
. (D.11)

Then, as noted above, J = ∂f/∂(y, µ). Since f(λ, µi, yi) = 0 and J(λ, µi, yi) is
nonsingular, the result follows from the complex implicit function theorem [8, Theo-
rem I.7.6].

Theorem D.2.2 (J-singularity). Let λ ∈ C be given. Assume that the pencil associated
with the GEP (D.9) is regular. Let (µi, yi) ∈ C×Cm be an eigenpair of the GEP normal-
ized such that cT yi = 1. Then J(λ, µi, yi) defined in (D.10) is singular if and only if µi is
a non-simple eigenvalue of the GEP.

Proof. We start by proving that J(λ, µi, yi) is singular implies that µi is a non-simple
eigenvalue . Assume that J(λ, µi, yi) is singular. Then there exists a nontrivial vector[
ξT α

]T ∈ Cm+1 such that J(λ, µi, yi)
[
ξT α

]T
= 0. The first row gives

B(λ, µi)ξ +B3yiα = 0, (D.12)

and the second row gives
cT ξ = 0. (D.13)

The cases α = 0 and α 6= 0 are investigated separately. Assume that α = 0, then ξ 6= 0
and thus (D.12) implies that ξ is an eigenvector to the GEP. However, (D.13) implies that
ξ is not a scaling of yi, hence, µi is not simple. Assume that α 6= 0. Note that since the
pencil is regular and µi ∈ C we have that B3yi 6= 0. Then by rescaling equation (D.12)
with 1/α we see that there exists a Jordan chain of length at least two, hence, µi is not
simple.
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To prove the converse, assume that µi is a non-simple eigenvalue (semisimple or non-
semisimple). Choose a vector u ∈ Cm such that in the semisimple case u is a second
eigenvector to µi, with any normalization; and in the non-semisimple case u is the second
vector of a Jordan chain of length at least two, corresponding to µi. Let ξ := u− (cTu)yi,
and note that ξ 6= 0 in the semisimple case. By inserting the definition of ξ into equations
(D.12) and (D.13) and utilizing the definition of u, we can see that the vectors

[
ξT 0

]T
and

[
ξT 1

]T
are nontrivial vectors in the kernel of J(λ, µi, yi) for the semisimple and

non-semisimple case, respectively. Hence, J(λ, µi, yi) is singular. In the latter case, Bu+
B3yi = 0 since that is the Jordan chain defining the chosen u.

Under the same conditions that the implicit functions exist we have the following equiv-
alence between the solutions to the NEP (D.3) and the solutions to the two-parameter
eigenvalue problem (D.1).

Theorem D.2.3 (Equivalence). Assume the quadruplet (λ, x, µ, y) ∈ C × Cn × C × Cm
is such that cT y = 1, the pencil associated with the GEP (D.9) is regular, and J(λ, µ, y)
defined in (D.10) is nonsingular. Then, (λ, x, µ, y) is a solution to (D.1) if and only if
(λ, x) is a solution to the NEP (D.3) for one pair of functions (gi(λ), φi(λ)) = (µ, y)
which satisfies (D.2), where gi and φi are the functions defined in Lemma D.2.1.

Proof. To prove the forward implication direction suppose (λ, x, µ, y) is a solution to
(D.1). From Lemma D.2.1, there are functions g and φ such that g(λ) = µ and φ(λ) = y.
Therefore, (D.3) is satisfied for that pair (g(λ), φ(λ)).

To prove the backward implication direction suppose (λ, x) is a solution to (D.3) for a
given pair (g(λ), φ(λ)). Then (λ, x, µ, y) = (λ, x, g(λ), φ(λ)) is a solution to (D.1). More
precisely, (D.1a) is satisfied since (D.3) is, and (D.1b) is satisfied due to (D.2).

The theorems above can be further interpreted as follows. A direct consequence of
Lemma D.2.1 and Theorem D.2.2 is that, if the pencil is regular then the simple eigenvalues
of the GEP (D.9) are analytic in a region around the point λ. Hence, in this sense, there
exists a nonlinearization. We now further discuss the assumptions in the theory.

Remark D.2.4 (Theory assumptions). Note that the problem (D.9) is a GEP, whose prop-
erties are independent of normalization, and for every eigenpair of the GEP there exists
a vector c not orthogonal to the eigenvector. The assumption cT y 6= 0 is therefore not a
restriction of generality.

If eigenvalues of the GEP have multiplicity greater than one, the theory does not predict
an analytic nonlinearization. Moreover, from perturbation theory we know that there are
algebraic multivalued functions which can have branch point singularities. Hence, at such
a point, there are corresponding nonlinear functions and a (multivalued) nonlinearization
exists in this sense. We have restricted the theory to simple eigenvalues for simplicity.

The theorems are based on the assumption that the pencil is regular for a fixed λ ∈ C.
The pencil can be singular, e.g., if B1 + λB2 and B3 have intersecting null-spaces. If
the pencil is singular, then for each µ there exists a nonzero vector y ∈ Cm such that
(B1 + λB2 + µB3)y = 0. Since all values of µ satisfies the GEP, the equation does not
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define µ as a function of λ. The assumption is thus a limitation of the method since it
cannot directly be applied to these eigenvalues. However, situations with a singular pencil
may often be approached directly, and it is possible that a whole set of eigenvalues for the
two-parameter eigenvalue problem can be found by solving (D.1a) for µ, while keeping λ
fixed. The situation can be exemplified by the extreme case where B3 = 0. Then values
of λ can be determined by (D.1b), independently of µ, and the latter can then be found by
solving (D.1a) with the corresponding fixed λ-values. In this case the λ-values are exactly
those that make the pencil (−(B1 + λB2), 0) singular.

D.2.2 Nonlinearizations leading to quadratic eigenvalue problems

We first illustrate the theory in the previous section with an implicitly defined function
which can be derived explicitly. Consider the two-parameter eigenvalue problem

0 = A1x+ λA2x+ µA3x (D.14a)

0 =

([
0 0
0 −1

]
+ λ

[
0 1
1 0

]
+ µ

[
−1 0
0 0

])
y, (D.14b)

for general matrices A1, A2 and A3. The second row in (D.14b) implies that the elements
in the vector yT =

[
y1 y2

]
are related by y2 = λy1. The first row in (D.14b) becomes

λ2y1 − µy1 = 0. Hence, since y1 6= 0, we have µ = λ2 and (D.14a) becomes

0 = A1x+ λA2x+ λ2A3x. (D.15)

This problem is commonly known as the quadratic eigenvalue problem, which has been
extensively studied in the literature [45]. The example shows that the two-parameter eigen-
value problem (D.14) can be nonlinearized to a quadratic eigenvalue problem. Moreover,
the determinant operator equation (D.7a) leads to the equation[

−A1 0
0 A3

]
z = λ

[
A2 A3

A3 0

]
z,

which is a particular companion linearization of (D.15). (It is in fact a symmetry preserv-
ing linearization [45, Section 3.4].) Many of the linearizations of polynomial eigenvalue
problems given in [28] can be obtained in a similar fashion. Since, the second equation
(D.1b) can be expressed as det(B(λ, µ)) = 0, which is a bivariate polynomial, this exam-
ple is consistent with the bivariate viewpoint of companion linearizations in [33]. Some
higher-degree polynomials can be constructed analogously to above, e.g., the polynomial
eigenvalue problem A1 + λA2 + λmA3. However, the general higher-degree polynomial
eigenvalue problem does not seem to fit into the class of two-parameter eigenvalue prob-
lems.

D.2.3 Nonlinearization leading to algebraic functions

The previous example can be modified in a way that it leads to algebraic functions, which is
also the generic situation. Nontrivial solutions to (D.1b) satisfy det(B(λ, µ)) = 0, which
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Figure D.1: The square-root nonlinearity illustrated in the example in Section D.2.3, with
a = 3, b = 2, c = −1, d = −2, e = 2 and f = 1. We observe a square-root singularity at
λ = ±

√
−3/2 which are the roots of p(λ).

is a bivariate polynomial. Therefore, the functions gi(λ) are roots of a polynomial, where
the coefficients are polynomials in λ, i.e., gi are algebraic functions. The generic situation
can be seen from the case where m = 2:

0 = (A1 + λA2 + µA3)x (D.16a)

0 =

([
a b
c d

]
+ λ

[
0 e
f 0

]
+ µ

[
1 0
0 1

])
y. (D.16b)

We obtain that µ is the root of a polynomial, where the coefficients depend on λ, i.e.,

0 = (µ+ a)(µ+ d)− (c+ λf)(b+ λe).

The explicit solutions to this quadratic equation are given by

µ = g±(λ) = −a+ d

2
±
√

(a+ d)2

4
− ad+ (b+ λe)(c+ λf).

We see by insertion of µ = g± into (D.16a) that the nonlinearization of (D.16) is a NEP
with an algebraic nonlinearity. The function g+ is illustrated in Figure D.1.

Several general conclusions can be made from this example. Note that the variables
a, b, c, d, e, f can be used for fitting of any function

√
p(λ) where p is a polynomial of

degree two. Therefore, we can now reverse the nonlinearization, and for the trivial case
a = d = 0 we directly obtain the following characterization.
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Lemma D.2.5 (Two-parameterization of an algebraic NEP). Suppose p(λ) = (b+λe)(c+
λf) is given, and let a = d = 0. If (λ, x) is a solution to the NEP

(A1 + λA2 +
√
p(λ)A3)x, (D.17)

then (λ, x, µ, y) satisfies the two-parameter eigenvalue problem equation (D.16) with µ :=√
p(λ) and

y :=

[ √
b+ λe

−
√
c+ λf

]
.

A further consequence of the lemma is that problems of the type (D.17) can be lin-
earized to a GEP using the determinant operators (D.7). More precisely, the combination
of Lemma D.2.5 and (D.7) shows that (D.17) can be solved by computing solutions to[

A1 −bA3

−cA3 A1

]
z = λ

[
−A2 eA3

fA3 −A2

]
z.

The fact that algebraic NEPs can be linearized was already pointed out in the conference
presentation [39], using techniques not involving two-parameter eigenvalue problems.

Also note that the functions gi(λ) have branch-point singularities. This is the generic
situation and we can therefore never expect that the nonlinearizations are entire functions
in general. The singularities restrict the performance of many methods, as we will see in
the simulations. The implications of singularities in practice is well-known in quantum
chemistry, where parameterized eigenvalue problems is a fundamental tool and the sin-
gularities are referred to as intruder states [11, Chapter 14]. In that context, methods for
computing the closest singularity (which limits the performance of the method) are given
in [21, 25].

D.3 Algorithm specializations

D.3.1 Derivative based algorithms

Many NEP-algorithms are based on derivatives of M . We will now illustrate how to ef-
ficiently and reliably access the derivatives of the NEP stemming from a nonlinearization
of a two-parameter eigenvalue problem. As a representative first situation we consider the
augmented Newton method; see [38, 47]. It can be derived by an elimination of the correc-
tion equation in Newton’s method, and leads to separate eigenvalue and eigenvector update
formulas expressed as

xk+1 = αkM(λk)−1M ′(λk)xk (D.18a)
α−1
k = dTM(λk)−1M ′(λk)xk (D.18b)

and λk+1 = λk − αk, where d ∈ Cn is a normalization vector. In an implementation, one
takes advantage of the fact that the same linear system appears twice, and only needs to be
computed once. The iteration has appeared in many variations with different names, e.g.,
inverse iteration [41] and Newton’s method [46].
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In order to apply (D.18) we clearly need the derivative of M defined in (D.3), which
can be obtained directly if we can compute the derivative of the implicitly defined function
gi. Note that the functions gi(λ) (as well as the auxiliary vector φi(λ)) can be evaluated
by solving the GEP (D.9), and normalizing according to cT yi = 1. Since the functions are
analytic in general, their respective derivatives exist. They can be computed according to
the following result, which gives a recursion that can compute the kth derivative by solving
k linear systems of dimension (m+ 1)× (m+ 1). The adaption of the theorem and (D.18)
into an algorithm results in Algorithm D.1.

Theorem D.3.1 (Explicit recursive form for derivatives). Let λ ∈ C be given. Assume that
the pencil associated with the GEP (D.9) is regular, and that (µi, yi) ∈ C×Cm is a solution
to the GEP with yi normalized as cT yi = 1. Moreover, assume that J(λ, µi, yi) is invert-
ible, where J is defined in (D.10). Let gi and φi be the functions defined in Lemma D.2.1,
then the kth derivative, k = 1, 2, . . . , of gi and φi are given by[

φ
(k)
i (λ)

g
(k)
i (λ)

]
= J(λ, µi, yi)

−1

[
−bk

0

]
, (D.19)

where

bk = kB2φ
(k−1)
i (λ) +

k−1∑
j=1

(
k

j

)
g

(k−j)
i (λ)B3φ

(j)
i (λ).

Proof. We again consider the analytic function f given by (D.11). By Lemma D.2.1 we
know that gi and φi are analytic around λ, and that f(λ, gi(λ), φi(λ)) = 0 in a neighbor-
hood of λ. Taking the kth implicit derivative with respect to λ gives

0 =
dk

dλk

[
B1φi(λ)

cTφi(λ)− 1

]
+

dk

dλk

[
λB2φi(λ)

0

]
+

dk

dλk

[
gi(λ)B3φi(λ)

0

]
.

The first term is found directly as

dk

dλk

[
B1φi(λ)

cTφi(λ)− 1

]
=

[
B1φ

(k)
i (λ)

cTφ
(k)
i (λ)

]
.

The second and third term can be calculated, by using Leibniz derivation rule for products,
to be

dk

dλk

[
λB2φi(λ)

0

]
=

[
λB2φ

(k)
i (λ)
0

]
+

(
k

k − 1

)[
B2φ

(k−1)
i (λ)

0

]
,

and

dk

dλk

[
gi(λ)B3φi(λ)

0

]
=[∑k−1

j=1

(
k
j

)
g

(k−j)
i (λ)B3φ

(j)
i (λ)

0

]
+

[
g

(k)
i (λ)B3φi(λ)

0

]
+

[
gi(λ)B3φ

(k)
i (λ)

0

]
.

196



Nonlinearizing two-parameter eigenvalue problems

We emphasize the recursion: All derivatives up to order k − 1 can be considered known
since these do not depend on the higher derivatives. Collecting the known terms in the
right-hand side gives the result.

Remark D.3.2. As a special case of Theorem D.3.1, for k = 1, we find that g′i(λ) =

−w
H
i B2yi

wH
i B3yi

where wi is the corresponding left eigenvector to the eigenpair (µi, yi). It fol-

lows from multiplying the first block-row of equation system (D.19) from the left with wHi .
The result is a special case of well known perturbation analysis for generalized eigenvalue
problems [14, Theorem 2.5]. In our case g′(λ) is the perturbation of the eigenvalue µ with
respect to λ in the GEP (D.9). More precisely, a perturbation of the matrix −(B1 + λB2)
with the structured perturbation εB2.

Specifically, the closed form of g′i(λ) means that the derivative of the NEP (D.3) can
be written in closed form, as

M ′(λ) = A2 −
wHi B2yi
wHi B3yi

A3.

For methods only requiring the first derivative of M(λ), the above expression can be used
instead of (D.19). However, that requires the computations of the left eigenvector of the
GEP. We will need the expression for theoretical purposes in Section D.4.

Algorithm D.1: Augmented Newton method for nonlinearized two-parameter
eigenvalue problem

input : Starting values λ0 ∈ C and x0 ∈ Cn
output: Approximations of eigenpairs of (D.3)

1 for k = 1, 2, 3, . . . , do
2 Compute gi(λk) := µ from the GEP (D.9) with c-normalized eigenvector

y ∈ Cm
3 if ‖A(λk, µ)xk‖ ≤TOL then
4 break
5 Compute g′i(λk) by computing b1 = B2y and solving the linear system of

equations (D.19)
6 Compute u = M(λk)−1M ′(λk)xk by using the results in Steps 2–5
7 Compute αk = (dTu)−1

8 Compute xk+1 = αky

9 Compute λk+1 = λk − α−1
k

The family of methods in [23, 22, 32] (flavors of the infinite Arnoldi method) also
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requires derivative information. These methods require computation of quantities such as

z0 = M(σ)−1(M ′(σ)x1 + · · ·+M (p)(σ)xp)

= M(σ)−1(A1x1 +A2

p∑
j=1

g(j)(σ)xj),

where x1, . . . , xp are given vectors. The computation requires higher derivatives of gi.
However, σ is unchanged throughout the iteration and therefore the matrix in the linear
system for derivative computation (D.19) is unchanged. Hence, all needed derivatives can
be computed by solving an additional linear system. If m� n, this will in general not be
computationally demanding. We also note that these fixed-shift methods choose a branch
gi in the initial solution of the GEP (D.9), and then stay on that branch.

Remark D.3.3. There are in general m different branches of the nonlinearization. Each
branch corresponds to a different eigenvalue, gi(λ) := µi, i = 1, . . . ,m, of the GEP (D.9).
In a method, at each evaluation of gi(λ), a branch needs to be chosen. Practical ways to
choose a branch are:

(i). Closest to the previous value, i.e., arg mini{|gi(λk)− gi(λk−1)|}.

(ii). Closest to a specific target value µ∗, i.e., arg mini{|gi(λk)− µ∗|}.

(iii). To minimize the residual norm of the NEP (D.3), i.e., arg mini{‖(A1 + λkA2 +
gi(λk)A3)xk‖}.

We use option (iii) in the simulations in Section D.5.

Note that the way the iterate λk is updated depends on the NEP-algorithm and is in that
sense independent of how the branch gi(λk) is chosen. Hence, the resulting method can
either aim for eigenvalues (λ, µ) close to some joint target (λ∗, µ∗), or close to some target
λ∗.

D.3.2 Projection methods

Many NEP-algorithms require the computation of a projected problem

WTM(λ)V z = 0 (D.20)

where V,W ∈ Cn×p are orthogonal matrices. The problem (D.20) is again a NEP, but of
smaller size. This can be viewed as a Petrov–Galerkin projection of the spaces spanned by
the columns of V andW . The projection is sometimes called subspace acceleration (or the
nonlinear Rayleigh–Ritz procedure), since it is often used to improve properties of a more
basic algorithm, e.g., the nonlinear Arnoldi method [49], Jacobi–Davidson methods [7, 5],
block preconditioned harmonic projection methods [51], the infinite Lanczos method [31],
and many more.
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In order to give access to these methods, we need to provide a way to solve (D.20)
for our nonlinearized problem. Fortunately, the projected problem stemming from the
nonlinearized two-parameter eigenvalue problem, i.e.,

(WTA1V + λWTA2V + gi(λ)WTA3V )z = 0, (D.21)

has a structure which suggests straightforward methods for the projected problem. This
is because the projected NEP has the same structure as the nonlinearized two-parameter
eigenvalue problem, and can therefore be lifted back to a two-parameter eigenvalue prob-
lem, but now of much smaller size. We can then use general methods for two-parameter
eigenvalue problems. This is directly observed from the fact that (D.21) is the nonlin-
earization of a two-parameter eigenvalue problem with projected A-matrices. It is made
more precise in the following result.

Corollary D.3.4 (Projected nonlinearized problem). Assume the quadruplet (λ, z, µ, y) ∈
C × Cp × C × Cm is such that cT y = 1, the pencil associated with the GEP (D.9) is
regular, and J(λ, µ, y) defined in (D.10) is nonsingular. Then, (λ, z, µ, y) is a solution to
the two-parameter eigenvalue problem

0 = WTA1V z + λWTA2V z + µWTA3V z (D.22a)
0 = B1y + λB2y + µB3y (D.22b)

if and only if (λ, z) is a solution to (D.21) for one pair of functions (g(λ), φ(λ)) = (µ, y)
which satisfies (D.2).

Proof. This follows directly from the application of Theorem D.2.3 on the projected prob-
lem (D.22) and the NEP (D.21).

If the projection space is small p � n, and m � n, we may even solve the two-
parameter eigenvalue problem using the operator determinant eigenvalue equations (D.7)
or [15, Algorithm 2.3].

The situation p = 1 implies that the projected problem is a scalar problem, and reduces
to the so-called Rayleigh functional. There are several methods based on the Rayleigh
functional, e.g., residual inverse iteration [34], and variational principle based approaches
such as [43] and references therein. The fact that the projected problem is scalar and linear
allows us to eliminate one of the variables, and we find that the other variable is a solution to
the generalized eigenvalue problem. The following corollary specifies the formulas more
precisely when µ is eliminated, and the adaption of the result into the residual inverse
iteration is given in Algorithm D.2.

Corollary D.3.5. Assume that wTA3v 6= 0. A solution, λ, µ ∈ C and y ∈ Cm, to the
projected NEP (D.21) with p = 1 can be characterized as follows. The tuple (λ, y) is a
solution to the GEP

((wTA3v)B1 − (wTA1v)B3)y = λ((wTA2v)B3 − (wTA3v)B2)y, (D.23)
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and µ is given by

µ = −w
TA1v + λwTA2v

wTA3v
. (D.24)

Proof. This is derived from a special case of Corollary D.3.4 where p = 1. Assuming that
wTA3v 6= 0, the relation (D.22a) with W = w and V = v can be solved for µ resulting in
the relation (D.24). By inserting this relation into (D.22b) we obtain the GEP (D.23).

Algorithm D.2: Resinv for nonlinearized two-parameter eigenvalue problem
input : Approximate eigenvector x0 ∈ Cn, shift σ ∈ C, right Rayleigh functional

vector w ∈ Cn
output: Approximations of eigenpairs of (D.3)

1 Compute M(σ) and factorize
while not converged do

2 Compute λk+1 = λ by solving the GEP (D.23) for v = xk
3 Compute µ from (D.24) with v = xk
4 Compute z := M(λk+1)xk = A0xk + λk+1A1xk + µA2xk
5 Compute correction uk+1 = xk −M(σ)−1z using the factorization computed

in Step 1
6 Normalize xk+1 = uk+1/‖uk+1‖

Remark D.3.6. In Corollary D.3.5 we have assumed that wTA3v 6= 0. There is an anal-
ogous formula that can be used when wTA2v 6= 0, and λ is eliminated. Then (µ, y) is a
solution to the GEP

((wTA2v)B1 − (wTA1v)B2)y = µ((wTA3v)B2 − (wTA2v)B3)y,

and λ is given by

λ = −w
TA1v + µwTA3v

wTA2v
.

For completeness we also consider the assumption wTA2v = wTA3v = 0. There are
two cases: First, if wTA1v 6= 0, then there is no solution to the projected problem (D.21).
Second, if wTA1v = 0, then equation (D.21) is satisfied for any value λ. Hence, for any
fixed λ, (µ, y) can be taken as any solution to the GEP (D.22b).

Remark D.3.7. In Step 2 of Algorithm D.2 a specific value has to be selected for λk+1,
and there are in general m different values to choose from. The situation is inherent to the
algorithm and the literature suggests to choose the value closest to the previous iterate,
i.e., arg mini{|λ(i)

k+1− λk|}, see, e.g., [34, 10]. This is the strategy used in the simulations
in Section D.5.
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D.4 Conditioning and accuracy

In order to characterize when the elimination procedure works well, we now analyze how
the technique behaves subject to perturbations. As a consequence of this we can directly
conclude how backward stable computation of g influences the accuracy (Section D.4.2).1

D.4.1 Conditioning as a nonlinear eigenvalue problem

Standard results for the condition number of NEPs can be used to analyze perturbations
with respect to the A-matrices. More precisely, for λ ∈ C we define

κA(λ) := lim sup
ε→0

{
|∆λ|
ε

: ‖∆Aj‖ ≤ εαj , j = 1, 2, 3

}
,

where αj are scalars for j = 1, 2, 3, and ∆λ is such that

0 = (A1 + ∆A1 + (λ+ ∆λ)(A2 + ∆A2) + g(λ+ ∆λ)(A3 + ∆A3))(x+ ∆x),
(D.25)

where additionally we require that ‖∆x‖ → 0 and |∆λ| → 0 as ε → 0, cf. [14, p. 499]
Then we know (see, e.g., [1]) that

κA(λ) = ‖v‖‖x‖α1 + |λ|α2 + |g(λ)|α3

|vHM ′(λ)x|
, (D.26)

where v, x are the corresponding left and right eigenvectors. In the following we will estab-
lish how this formula is modified when we also consider perturbations in the B-matrices.
Note that this implies that the function g is also perturbed and we cannot directly use the
standard result. We therefore define, for λ ∈ C, the condition number

κ(λ) := lim sup
ε→0

{
|∆λ|
ε

: ‖∆Aj‖ ≤ εαj , j = 1, 2, 3 and ‖∆Bj‖ ≤ εβj , j = 1, 2, 3

}
,

where βj are scalars for j = 1, 2, 3, and ∆λ fulfills (D.25) but with a perturbed g, i.e.,
µ+ ∆µ = g(λ+ ∆λ), such that

0 = (B1 + ∆B1 + (λ+ ∆λ)(B2 + ∆B2) + (µ+ ∆µ)(B3 + ∆B3)) (y + ∆y)
(D.27a)

1 = cT (y + ∆y), (D.27b)

where additionally we require that ‖∆y‖ → 0 and |∆µ| → 0 as ε → 0. The definitions
can be used both for absolute and relative condition numbers by setting αj = βj = 1 or
αj = ‖Aj‖, βj = ‖Bj‖ for j = 1, 2, 3, respectively.

1For notational convenience the i index on gi is dropped in this section.
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As an intermediate step we first consider the perturbation of µ ∈ C subject to pertur-
bations in the B-matrices and fixed perturbations in λ ∈ C by analyzing

κg(λ) := lim sup
ε→0

{
|∆µ|
ε

: |∆λ| ≤ εγ and ‖∆Bj‖ ≤ εβj , j = 1, 2, 3

}
,

where γ is a scalar, and ∆µ satisfies (D.27) for a given λ . The following result shows
that κg can be expressed as a sum of perturbations associated with the B-matrices and
perturbations associated with λ.

Lemma D.4.1. Let λ ∈ C be given. Suppose the pencil associated with the GEP (D.9)
is regular, and that g(λ) = µ ∈ C is a simple eigenvalue of the GEP with w and y being
corresponding left and right eigenvectors, respectively. Then,

κg(λ) = κg,B(λ) + κg,λ(λ),

where

κg,B(λ) = ‖w‖‖y‖β1 + |λ|β2 + |g(λ)|β3

|wHB3y|
and κg,λ(λ) = γ

|wHB2y|
|wHB3y|

.

Proof. Since µ is a simple eigenvalue of the GEP (D.9), the eigenvalue and eigenvector are
analytic, and therefore ∆y = O(ε) when all the perturbations are O(ε). Moreover, since
µ is a simple finite eigenvalue, then wHB3y 6= 0. By collecting all the higher order terms
the perturbed GEP (D.27a) can thus be written as

(∆B1 + λ∆B2 + ∆λB2 + µ∆B3 + ∆µB3) y +B(λ, µ)∆y = O(ε2).

Multiplying with wH from the left, solving for ∆µ, and dividing with ε gives that

∆µ

ε
= −w

H∆B1y + λwH∆B2y + ∆λwHB2y + µwH∆B3y

εwHB3y
+O(ε). (D.28)

An upper bound is thus found as

∆µ

ε
≤ ‖w‖‖y‖β1 + |λ|β2 + |µ|β3

|wHB3y|
+ γ
|wHB2y|
|wHB3y|

+O(ε).

It remains to show that the bound can be attained. This follows from considering B̂ =
wyH/‖w‖‖y‖, and inserting

∆B1 = −εβ1B̂ ∆B2 = −ε λ
|λ|
β2B̂

∆B3 = −ε g(λ)

|g(λ)|
β3B̂ ∆λ = −ε w

HB2y

|wHB2y|
|wHB3y|
wHB3y

γ,

into (D.28).
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Using the intermediate result we can now show that the condition number κ(λ) is the
sum of the standard condition number of NEPs and a term representing perturbations in g
generated by perturbations in the B-matrices, i.e., κg,B(λ).

Theorem D.4.2. Let λ ∈ C be a simple eigenvalue of the NEP (D.3) with v and x being
corresponding left and right eigenvectors, respectively. Moreover, for this λ, suppose the
pencil associated with the GEP (D.9) is regular, and g(λ) = µ ∈ C is a simple eigenvalue
of the GEP with w and y being corresponding left and right eigenvectors, respectively. 2

Then,

κ(λ) = κA(λ) + κg,B(λ)
|vHA3x|
|vHM ′(λ)x|

,

where κA(λ) is given by (D.26).

Proof. Recall the assumptions that the NEP (D.3), i.e., M , is analytic, that λ is a sim-
ple eigenvalue of the NEP, and that µ is a simple eigenvalue of the GEP (D.9). Hence,
the eigenvalues and eigenvectors are analytic, and therefore ∆x = O(ε) when all the
perturbations are O(ε). Moreover, we note that it also implies that vHM ′(λ)x 6= 0 and
wHB3y 6= 0. By using that g(λ + ∆λ) = g(λ) + ∆µ and collecting all the higher order
terms, the perturbed NEP (D.25) can therefore be written as

(∆A1 + λ∆A2 + ∆λA2 + g(λ)∆A3 + ∆µA3)x+M(λ)∆x = O(ε2).

Multiplying with vH from the left, expanding ∆µ according to (D.28), solving for ∆λ,
and dividing with ε, gives that

∆λ

ε
= −v

H∆A1x+ λvH∆A2x+ g(λ)vH∆A3x+ θg,B(λ)vHA3x

εvH
(
A2 − wHB2y

wHB3y
A3

)
x

+O(ε), (D.29)

where θg,B(λ) := −(wH∆B1y + λwH∆B2y + g(λ)wH∆B3y)/(wHB3y). Based on
Remark D.3.2 we observe that the denominator of (D.29) is equal to εvHM ′(λ)x. An
upper bound is therefore

∆λ

ε
≤ ‖v‖‖x‖α1 + |λ|α2 + |g(λ)|α3

|vHM ′(λ)x|
+ κg,B(λ)

|vHA3x|
|vHM ′(λ)x|

+O(ε).

It remains to show that the bound can be attained. Similar to the proof of Lemma D.4.1,
this follows from considering B̂ = wyH/‖w‖‖y‖ and Â = vxH/‖v‖‖x‖, and inserting

∆B1 = εβ1B̂ ∆B2 = ε
λ

|λ|
β2B̂ ∆B3 = ε

g(λ)

|g(λ)|
β3B̂

∆A1 = −εα1Â ∆A2 = −ε λ
|λ|
α2Â ∆A3 = −ε g(λ)

|g(λ)|
α3Â,

into (D.29).
2This corresponds to (λ, µ) being a simple eigenvalue to the two-parameter eigenvalue problem.
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D.4.2 Backward stable computation of g

The nonlinearization is based on solving a GEP to evaluate the function g(λ). We analyze
the effects on the accuracy in the computed λ when the GEP is solved numerically with a
backward stable method. The analysis assumes the two triplets (λ, x, v) ∈ C × Cn × Cn
and (µ, y, w) ∈ C×Cm×Cm are such that λ is a simple eigenvalue of the NEP (D.3), the
pencil associated with the GEP (D.9) is regular, µ is a simple eigenvalue of the GEP, and
v, w and x, y are corresponding left and right eigenvectors, respectively.

From the assumption that the GEP (D.9) is solved by a backward stable method we
know that µ can be characterized as the exact solution to a nearby problem. More precisely,
µ solves

(C1 + ∆C1)y = µ(C2 + ∆C2)y,

where C1 = −(B1 + λB2), C2 = B3, with perturbations, ∆C1 and ∆C2, that are propor-
tional to the errors in our GEP solver. Specifically, there are non-negative β1, β3 ∈ R such
that ‖∆C1‖ = β1ε and ‖∆C2‖ = β3ε. Thus, the perturbation in g is precisely captured by
κg,B(λ) from Lemma D.4.1, with β2 = 0 and β1 and β3 given above, i.e., by the specific
choice of GEP solver. Hence, by application of Theorem D.4.2 with αj = 0 for j = 1, 2, 3
we can conclude that the forward error in λ, induced by the inexact but backward stable
computation of g(λ) is bounded by

|∆λ| ≤ ‖w‖‖y‖β1 + |g(λ)|β3

|wHB3y|
|vHA3x|
|vHM ′(λ)x|

ε+O(ε2). (D.30)

Without loss of generality we now assume that ‖x‖ = ‖v‖ = ‖y‖ = ‖w‖ = 1.
The upper bound (D.30) is related to the condition number for multiparameter eigen-

value problems as follows. As mentioned in the introduction, the condition number for the
two-parameter eigenvalue problem can be directly expressed with the inverse ofC0 defined
in (D.8). First note that our assumptions imply that C0 is invertible.

Lemma D.4.3. Under the conditions of Theorem D.4.2 the matrixC0 is nonsingular, where
C0 is defined in (D.8).

Proof. By using the expression for M ′(λ) from Remark D.3.2 we thus have

(wHB3y)(vHM ′(λ)x) = (vHA2x)(wHB3y)− (vHA3x)(wHB2y) = det(C0).
(D.31)

Since the eigenvalues λ and µ are simple we know that wHB3y 6= 0 and vHM ′(λ)x 6= 0.
Hence, det(C0) 6= 0.

From (D.31) we can conclude that the bound (D.30) on |∆λ| can be written as

|∆λ| ≤ (β1 + |g(λ)|β3)
|vHA3x|
|det(C0)|

ε+O(ε2). (D.32)
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Moreover, for a nonsingular C0 it is shown in [18, Theorem 6] that the condition number
of the two-parameter eigenvalue is

K = ‖C−1
0 ‖θ,

where the θ-norm, i.e., ‖·‖θ, is an induced norm defined in [18, Equation (5)].3 In our case
we can explicitly bound the condition number by using bounds following directly from the
definition of the θ-norm:

‖C−1
0 ‖θ =

1

|det(C0)|

∥∥∥∥[ wHB3y −vHA3x
−wHB2y vHA2x

]∥∥∥∥
θ

≥

1

|det(C0)|

∥∥∥∥[0 −vHA3x
0 0

]∥∥∥∥
θ

=
|vHA3x||θ2|
|det(C0)|

.

The parameter θ2 is the second component of the θ-vector used in the definition of the
θ-norm. Hence, the bound in (D.32) can be further bounded by

|∆λ| ≤ Kβ1 + |g(λ)|β3

|θ2|
ε+O(ε2). (D.33)

The typical choices of θ corresponding to the absolute, respectively, relative condition
number of the two-parameter eigenvalue problem are |θ2| = 1 + |λ| + |g(λ)| and |θ2| =
‖B1‖ + |λ|‖B2‖ + |g(λ)|‖B3‖. From the bounds in (D.33) we therefore conclude: The
error generated by a backward stable method is benign for well conditioned two-parameter
eigenvalue problems.

D.5 Simulations

D.5.1 Random example

We generate an example similar to the example in [15], but with m � n. More precisely,
we let

Ai = αiVAiFiUAi , Bi = βiVBiGiUBi , i = 1, 2, 3

where n = 5000 and m = 20. The matrices VAi
, UAi

, VBi
, UBi

have randomly normal
distributed elements and Fi, Gi are diagonal matrices with randomly normal distributed
diagonal elements. The scalars αi and βi were selected such that the eigenvalues closest
to the origin were of order of magnitude one in modulus (α1 = β1 = 1, α2 = β2 =
1/500, α3 = β3 = 1/50). The simulations were carried out using the Julia language [6]
(version 1.1.0), but implementations of the algorithms are available online for both Julia
and MATLAB.4

3For a given vector θ ∈ Rn with positive entries, the θ-norm of a matrix C ∈ Cn×n is defined as ‖C‖θ :=
max{‖Cz‖ : z ∈ Cn, |zk| = θk for k = 1, 2, . . . , n}.

4The matrices and the simulations are provided online for reproducibility: https://www.math.kth.
se/~eliasj/src/nonlinearization. The simulations were carried out using Ubuntu Linux, Intel(R)
Core(TM) i7-8550U CPU @ 1.80GHz, 16 GB of RAM.
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Figure D.2: The functions gi(λ), i = 1, . . . , 4 closest to the origin, for λ ∈ [−20, 20]. All
functions are analytic in the considered interval.

Since m = 20, we in general obtain 20 different functions g1, . . . , g20, which we
order by magnitude in the origin, each corresponding to a different NEP. Some of the
nonlinear functions gi are visualized in Figure D.2. The solutions closest to the origin, for
the NEPs corresponding to the functions g1, g2, g3, are given in Figure D.3. The solutions
are computed with the tensor infinite Arnoldi method. In theory, if the equivalence as
described in Theorem D.2.3 holds in the desired point, the solution of the two-parameter
eigenvalue problem closest to the origin could be found by computing solutions for all the
20 NEPs corresponding to g1, . . . , g20.

We illustrate our algorithms and compare with several other single-vector state-of-the-
art algorithms in [36]. As starting values we use λ0 = 0.15 + 0.1i and µ0 = 35 + 0.25i,
and a starting vector with an elementwise absolute error (from a nearby solution) less than
0.05. The iteration history of Algorithm D.1, in terms of residual norm (with eigenvectors
normalized with respect to the 2-norm), is given in Figure D.4. We observe an asymptotic
fast convergence for Algorithm D.1, which is expected since the solution point is analytic
and simple. The error is measured at Step 3 in Algorithm D.1 which implies that by
construction, the error in the B-equation is (numerically) zero. This is a property of the
elimination in our approach. We compare (with the same starting values) with the inverse
iteration Newton approach proposed in [36]. Note that this method is designed for more
general problems, and not specifically our situation wherem� n and also multiparameter
nonlinear problems.5 In our implementation of [36, InvIter] we use two LU-factorizations
to handle the multiple linear solves per iteration. For the above example that was faster in

5For multiparameter linear problems [36, InvIter] is equivalent to the tensor Rayleigh quotient iteration from
[35, 16].
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Figure D.3: Solutions corresponding to gi where i = 1, 2, 3.

terms of execution time compared to direct solves, although that might not be the case for
a larger and sparse problem. The comparison between the two algorithms as a function of
iteration is inconclusive, as can be seen in Figure D.4a. However, in terms of CPU-time
Algorithm D.1 is somewhat faster, as can seen in Figure D.4b.

The convergence of our adaption of residual inverse iteration (Algorithm D.2) initiated
in the same way (except the starting vector is chosen as a vector of ones) is illustrated in
Figure D.5. We clearly see the expected linear convergence, since it is equivalent to resid-
ual inverse iteration for NEPs and the convergence theory in [34, Section 3–4] is directly
applicable. We compare with a proposed generalization of residual inverse iteration [36,
InvIter], again noting that it has a much wider applicability domain than our approach. In
this case, our method has a smaller convergence factor, intuitively motivated by the fact
that we solve the B-equation exactly.

The problem can also be solved with the tensor infinite Arnoldi method [22]. More
specifically, we use the implementation of the method available in the Julia package NEP-
PACK [20] (version 1.0.2). By directly using Theorem D.3.1 we can compute the 60 first
derivatives. The convergence of the first ten eigenvalues are visualized in Figure D.6, for
two branches. The solutions are visualized in Figure D.3.
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Figure D.4: Visualization of the convergence of Algorithm D.1 and [36, Algorithm 1 (In-
vIter)] for the problem in Section D.5.1.
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Figure D.5: Visualization of the convergence of Algorithm D.2 and [36, Algorithm 2 (Re-
sIter)] for the problem in Section D.5.1.
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Figure D.6: Visualization of convergence of the tensor infinite Arnoldi method for the
problem in Section D.5.1, for g1 and g2. The error is measured as relative error where the
computed value λ is compared to a precomputed reference solution λ̂.
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D.5.2 Domain decomposition example

We consider a BVP-eigenvalue problem, which we separate into two domains in a way
that it leads to a two-parameter eigenvalue problem. Similar techniques and analysis is
found in, e.g., [9], [3, Chapter 2], and [19, Experiment 4], where it is common to force the
solution to have roots within the considered interval.

Consider the Helmholtz eigenvalue problem defined in the domain x ∈ [x0, x2],

u′′(x) + κ2(x)u(x) = λu(x) for x ∈ [x0, x2] (D.34a)
u(x0) = 0 (D.34b)
u′(x2) = 0, (D.34c)

with a wavenumber κ which is discontinuous in one part of the domain and smooth in
another, as in Figure D.7. We take a point x1 such that κ is smooth for x > x1, assume
that the solution is nonzero in the interface point x = x1, and define

µ :=
u′(x1)

u(x1)
.

This means we have two separate boundary value problems for the two domains:

u′′1(x) + κ2(x)u1(x) = λu1(x), x0 ≤ x ≤ x1 (D.35a)
u1(x0) = 0 (D.35b)

u′1(x1)− µu1(x1) = 0 (D.35c)

and

u′′2(x) + κ2(x)u2(x) = λu2(x), x1 ≤ x ≤ x2 (D.36a)
u′2(x1)− µu2(x1) = 0 (D.36b)

u′2(x2) = 0. (D.36c)

These are standard linear BVPs (with robin boundary conditions) and the uniqueness of
these BVPs implies an equivalence with the original BVP (D.34). See [26] and references
therein for domain decomposition methods for PDE eigenvalue problems.

The wavenumber is given as in Figure D.7, i.e., it is discontinuous at several points
in [x0, x1] and with a high frequency decaying sine-curve in [x1, x2], representing a in-
homogeneous periodic medium. We invoke different discretizations in the two domains,
for the following reasons. Since κ is discontinuous in [x0, x1] spectral discretization in
that domain will not be considerably faster than a finite difference approximation. We
therefore use a uniform second order finite difference for (D.35) to obtain sparse matrices
and one sided second order finite different scheme for the boundary condition. A spec-
tral discretization is used for [x1, x2] where the wavenumber is smooth. Since µ appears
linearly in the boundary condition, the discretization leads to a two-parameter eigenvalue
problem of the type (D.1). In our setting A1, A2, A3 are large and sparse, and B1, B2, B3

are full matrices of smaller size. We use the discretization parameters such that n = 106
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Figure D.7: The wavenumber for the example in Section D.5.2. The wavenumber is si-
nusoidal with high frequency in the interval [4, 5], and discontinuous in 1
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and m = 30, and x0 = 0, x1 = 4 and x2 = 5. In order to make the measurement of
error easier, we use left diagonal scaling of the problem such that the diagonal elements of
A(1.0, 1.0) and B(1.0, 1.0) are equal to one.

The eigenvalues and some corresponding eigenfunctions are plotted in Figure D.8 and
Figure D.9. In this one-dimensional case, the structure of the problem implies that B3 is a
rank-one matrix. Hence, the GEP (D.9) only has one finite solution. The nonlinear function
g1 of this problem is given in Figure D.10. Clearly the function has singularities for some
real λ-values. The convergence of Algorithm D.1 and Algorithm D.2 are again compared to
[36] in Figure D.11. We again conclude that both our approaches are competitive, although
not always faster in terms of iterations, but our approach is generally faster in terms of
CPU-time. We note that the closed-form solution of g1 is not exploited in these simulations.
The algorithms are initiated with approximate rounded eigenvectors and eigenvalues close
to the eigenvalue λ ≈ 18. We note that our methods do not require a starting value for µ
(in contrast to [36]) which is an attractive feature from an application point of view, since
the value µ = u′(x1)/u(x1) is artificially introduced parameter and may not be easy to
estimate.

0 10 20 30 40 50 60 70

λ

singularities
shifts

Figure D.8: Computed eigenvalues, singularities, and the shifts used in the infinite Arnoldi
method.
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Figure D.9: Some computed eigenfunctions of (D.34)
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Figure D.10: The nonlinear function g1 in the simulation in Section D.5.2.

We apply the tensor infinite Arnoldi method also for this problem. Since this family of
methods is based on a power series expansion, one can only expect to be able to compute
eigenvalues on the same side of the singularities as the shift. We therefore run the algorithm
several times for different shifts, and select the shifts far away from the singularities, as
described in Figure D.8. The convergence of the two runs are illustrated in Figure D.12.
Note that the convergence corresponding to one eigenvalue for the shift σ = 12 stagnates.
This is because the eigenvalue is close to the singularity, and therefore difficult to compute,
as can be seen in Figure D.8.
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Figure D.11: Visualization of the convergence of the proposed algorithms and two algo-
rithms in [36] applied to the domain decomposition example in Section D.5.2.
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Figure D.12: Convergence history for two different shifts
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D.6 Conclusions and outlook

We have presented a general framework to approach two-parameter eigenvalue problems,
by nonlinearization to NEPs. Several steps in this technique seem to be generalizable
(but beyond the scope of the paper), e.g., to general multiparameter eigenvalue problems
essentially by successive application of the elimination. One such elimination leads to a
nonlinear two-parameter eigenvalue problem as considered, e.g., in [36].

Our paper uses the assumption m � n and that A1, A2 and A3 are large and sparse.
We made this assumption mostly for convenience, since this allows us to apply a general
purpose method for the parameterized eigenvalue problem (D.9). If, on the other hand,
we wish to solve two-parameter eigenvalue problems where these assumptions are not
satisfied, the ideas may still be useful. The GEP (D.9) may for instance be approached with
structured algorithms (exploiting sparsity, low-rank properties and symmetry), or iterative
methods for the GEP, where early termination is coupled with the NEP-solver.

The generated nonlinear functions gi are algebraic functions, and can therefore contain
singularities (e.g., branch point singularities as characterized in Section D.2). These can
be problematic in the numerical method, and therefore it would be useful with transforma-
tions that remove singularities. Linearization which do not lead to singularities have been
established for rational eigenvalue problems [42].

The problem in Section D.5.2 is such that we obtain one large and sparse parameterized
matrix A(λ, µ) which is coupled with a small and dense system. The setting matches the
assumptions of the paper and is a representative example of cases where the behavior is
different in the two physical domains. The example may be generalizable, to other coupled
physical systems where the modeling in one domain leads to a much smaller matrix, e.g.,
using domain decomposition with more physical dimensions. Note however that the pre-
sented methods seem mostly computationally attractive if the discretization of one domain
is much smaller. If we apply the same technique to domains of equal size, other generic
two-parameter eigenvalue methods (such as those in [36]) may be more effective.
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